Dirichlet Convolution is Associative

From ProofWiki
Jump to navigation Jump to search

Theorem

Let $f, g, h$ be arithmetic functions.

Let $*$ denote Dirichlet convolution.


Then:

$\paren {f * g} * h = f * \paren {g * h}$


Proof

We have:

\(\ds \map {\paren {\paren {f * g} * h} } n\) \(=\) \(\ds \sum_{a b \mathop = n} \map {\paren {f * g} } a \map h b\)
\(\ds \) \(=\) \(\ds \sum_{a b \mathop = n} \ \sum_{c d \mathop = a} \map f c \map g d \map h b\)
\(\ds \) \(=\) \(\ds \sum_{b c d \mathop = n} \map f c \map g d \map h b\)

and

\(\ds \map {\paren {f * \paren {g * h} } } n\) \(=\) \(\ds \sum_{a b \mathop = n} \map f a \map {\paren {g * h} } b\)
\(\ds \) \(=\) \(\ds \sum_{a b \mathop = n} \map f a \sum_{c d \mathop = b} \map g c \map h d\)
\(\ds \) \(=\) \(\ds \sum_{a c d \mathop = n} \map f a \map g c \map h d\)

and associativity follows.

$\blacksquare$


Also see