Equation of Hyperbola in Reduced Form/Cartesian Frame/Parametric Form 1

From ProofWiki
Jump to navigation Jump to search

Theorem

Let $K$ be a hyperbola such that:

the transverse axis of $K$ has length $2 a$
the conjugate axis of $K$ has length $2 b$.


Let $K$ be aligned in a cartesian plane in reduced form.


The right-hand branch of $K$ can be expressed in parametric form as:

$\begin {cases} x = a \cosh \theta \\ y = b \sinh \theta \end {cases}$


Proof

Let the point $\tuple {x, y}$ satisfy the equations:

\(\ds x\) \(=\) \(\ds a \cosh \theta\)
\(\ds y\) \(=\) \(\ds b \sinh \theta\)


Then:

\(\ds \frac {x^2} {a^2} - \frac {y^2} {b^2}\) \(=\) \(\ds \frac {\paren {a \cosh \theta}^2} {a^2} - \frac {\paren {b \sinh \theta}^2} {b^2}\)
\(\ds \) \(=\) \(\ds \frac {a^2} {a^2} \cosh^2 \theta - \frac {b^2} {b^2} \sinh^2 \theta\)
\(\ds \) \(=\) \(\ds \cosh^2 \theta - \sinh^2 \theta\)
\(\ds \) \(=\) \(\ds 1\) Difference of Squares of Hyperbolic Cosine and Sine

$\blacksquare$


Sources