Hilbert Sequence Space is Metric Space

From ProofWiki
Jump to navigation Jump to search

Theorem

Let $A$ be the set of all real sequences $\sequence {x_i}$ such that the series $\ds \sum_{i \mathop \ge 0} {x_i}^2$ is convergent.

Let $\ell^2 = \struct {A, d_2}$ be the Hilbert sequence space on $\R$.


Then $\ell^2$ is a metric space.


Proof 1

$\ell^2$ is a particular instance of the general $p$-sequence space $\ell^p$.

Hence $p$-Sequence Space of Real Sequences is Metric Space can be applied directly.

$\blacksquare$


Proof 2

By definition of the Hilbert sequence space on $\R$:

Let $A$ be the set of all real sequences $\sequence {x_i}$ such that the series $\ds \sum_{i \mathop \ge 0} {x_i}^2$ is convergent.

Then $\ell^2 := \struct {A, d_2}$ where $d_2: A \times A: \to \R$ is the real-valued function defined as:

$\ds \forall x = \sequence {x_i}, y = \sequence {y_i} \in A: \map {d_2} {x, y} := \paren {\sum_{k \mathop \ge 0} \paren {x_k - y_k}^2}^{\frac 1 2}$


From Convergence of Square of Linear Combination of Sequences whose Squares Converge we have that $\ds \sum_{k \mathop \ge 0} \paren {x_k - y_k}^2$ does actually converge.


Proof of Metric Space Axiom $(\text M 1)$

\(\ds \map {d_2} {x, x}\) \(=\) \(\ds \paren {\sum_{k \mathop \ge 0} \paren {x_k - x_k}^2}^{\frac 1 2}\) Definition of $d_2$
\(\ds \) \(=\) \(\ds \paren {\sum_{k \mathop \ge 0} 0^2}^{\frac 1 2}\)
\(\ds \) \(=\) \(\ds 0\)

So Metric Space Axiom $(\text M 1)$ holds for $d_2$.

$\Box$


Proof of Metric Space Axiom $(\text M 2)$: Triangle Inequality

Let $z = \sequence {z_i} \in A$.



\(\ds \map {d_2} {x, y} + \map {d_2} {y, z}\) \(=\) \(\ds \paren {\sum_{k \mathop \ge 0} \paren {x_k - y_k}^2}^{\frac 1 2} + \paren {\sum_{k \mathop \ge 0} \paren {y_k - z_k}^2}^{\frac 1 2}\) Definition of $d_2$
\(\ds \) \(\ge\) \(\ds \paren {\sum_{k \mathop \ge 0} \paren {x_k - z_k}^2}^{\frac 1 2}\) Minkowski's Inequality for Sums: index $2$
\(\ds \) \(=\) \(\ds \map {d_2} {x, z}\) Definition of $d_2$

So Metric Space Axiom $(\text M 2)$: Triangle Inequality holds for $d_2$.

$\Box$


Proof of Metric Space Axiom $(\text M 3)$

\(\ds \map {d_2} {x, y}\) \(=\) \(\ds \paren {\sum_{k \mathop \ge 0} \paren {x_k - y_k}^2}^{\frac 1 2}\) Definition of $d_2$
\(\ds \) \(=\) \(\ds \paren {\sum_{k \mathop \ge 0} \paren {y_k - x_k}^2}^{\frac 1 2}\) Definition of Absolute Value
\(\ds \) \(=\) \(\ds \map {d_2} {y, x}\) Definition of $d_2$

So Metric Space Axiom $(\text M 3)$ holds for $d_2$.

$\Box$


Proof of Metric Space Axiom $(\text M 4)$

\(\ds x\) \(\ne\) \(\ds y\)
\(\ds \leadsto \ \ \) \(\ds \exists k \in \N: \, \) \(\ds x_k\) \(\ne\) \(\ds y_k\)
\(\ds \leadsto \ \ \) \(\ds \paren {x_k - y_k}^2\) \(>\) \(\ds 0\)
\(\ds \leadsto \ \ \) \(\ds \paren {\sum_{k \mathop \ge 0} \paren {x_k - y_k}^2}^{\frac 1 2}\) \(>\) \(\ds 0\)
\(\ds \leadsto \ \ \) \(\ds \map {d_2} {x, y}\) \(>\) \(\ds 0\) Definition of $d_2$

So Metric Space Axiom $(\text M 4)$ holds for $d_2$.

$\blacksquare$