Integration by Inversion

From ProofWiki
Jump to navigation Jump to search

Theorem

$\ds \int_0^{+\infty} \map f x \rd x = \int_0^{+\infty} \dfrac {\map f {\frac 1 x} } {x^2} \rd x$


Proof

\(\ds \int_0^{+\infty} \map f x \rd x\) \(=\) \(\ds \int_{x \mathop \to 0}^{x \mathop \to +\infty} \map f x \rd x\) Definition of Improper Integral
\(\ds \) \(=\) \(\ds \int_{\frac 1 x \mathop \to 0}^{\frac 1 x \mathop \to +\infty} \map f {\frac 1 x} \map \rd {\frac 1 x}\) Integration by Substitution
\(\ds \) \(=\) \(\ds \int_{\frac 1 x \mathop \to 0}^{\frac 1 x \mathop \to +\infty} \map f {\frac 1 x} \paren {-\dfrac 1 {x^2} } \rd x\) Power Rule for Derivatives
\(\ds \) \(=\) \(\ds -\int_{x \mathop \to +\infty}^{x \mathop \to 0} \dfrac {\map f {\frac 1 x} } {x^2} \rd x\) simplifying
\(\ds \) \(=\) \(\ds \int_{x \mathop \to 0}^{x \mathop \to +\infty} \dfrac {\map f {\frac 1 x} } {x^2} \rd x\) Reversal of Limits of Definite Integral
\(\ds \) \(=\) \(\ds \int_0^{+\infty} \dfrac {\map f {\frac 1 x} } {x^2} \rd x\) Definition of Improper Integral

$\blacksquare$