Isomorphism between Gaussian Integer Units and Rotation Matrices Order 4

From ProofWiki
Jump to navigation Jump to search

Theorem

Let $\struct {U_\C, \times}$ be the group of Gaussian integer units under complex multiplication.

Let $\struct {R_4, \times}$ be the group of rotation matrices of order $4$ under modulo addition.


Then $\struct {U_\C, \times}$ and $\struct {R_4, \times}$ are isomorphic algebraic structures.


Proof

Establish the mapping $f: U_C \to R_4$ as follows:

\(\ds \map f 1\) \(=\) \(\ds r_0\)
\(\ds \map f i\) \(=\) \(\ds r_1\)
\(\ds \map f {-1}\) \(=\) \(\ds r_2\)
\(\ds \map f {-i}\) \(=\) \(\ds r_3\)


From Isomorphism by Cayley Table, the two Cayley tables can be compared by eye to ascertain that $f$ is an isomorphism:


Cayley Table of Gaussian Integer Units

The Cayley table for $\struct {U_\C, \times}$ is as follows:

$\begin{array}{r|rrrr}

\times & 1 & i & -1 & -i \\ \hline 1 & 1 & i & -1 & -i \\ i & i & -1 & -i & 1 \\ -1 & -1 & -i & 1 & i \\ -i & -i & 1 & i & -1 \\ \end{array}$


Group of Rotation Matrices Order $4$

The Cayley table for $\struct {R_4, \times}$ is as follows:

$\begin{array}{r|rrrr}

\times & r_0 & r_1 & r_2 & r_3 \\ \hline r_0 & r_0 & r_1 & r_2 & r_3 \\ r_1 & r_1 & r_2 & r_3 & r_0 \\ r_2 & r_2 & r_3 & r_0 & r_1 \\ r_3 & r_3 & r_0 & r_1 & r_2 \\ \end{array}$


Sources