Leibniz's Formula for Pi/Proof by Digamma Function

From ProofWiki
Jump to navigation Jump to search

Theorem

$\dfrac \pi 4 = 1 - \dfrac 1 3 + \dfrac 1 5 - \dfrac 1 7 + \dfrac 1 9 - \cdots \approx 0 \cdotp 78539 \, 81633 \, 9744 \ldots$


That is:

$\ds \pi = 4 \sum_{k \mathop \ge 0} \paren {-1}^k \frac 1 {2 k + 1}$


Proof

\(\ds 2 b \sum_{k \mathop = 1}^\infty \dfrac {\paren {-1}^{k + 1} } {a + b k}\) \(=\) \(\ds \map \psi {\dfrac a {2 b} + 1} - \map \psi {\dfrac a {2 b} + \dfrac 1 2}\) Reciprocal times Derivative of Gamma Function: Corollary $2$
\(\ds \leadsto \ \ \) \(\ds -4 \sum_{k \mathop = 1}^\infty \dfrac {\paren {-1}^k} {1 + 2 k}\) \(=\) \(\ds \map \psi {\dfrac 1 4 + 1} - \map \psi {\dfrac 1 4 + \dfrac 1 2}\) $a := 1$ and $b := 2$
\(\ds \leadsto \ \ \) \(\ds 4 \sum_{k \mathop = 1}^\infty \dfrac {\paren {-1}^k} {1 + 2 k}\) \(=\) \(\ds \map \psi {\dfrac 3 4} - \map \psi {\dfrac 5 4}\) multiplying both sides by $-1$
\(\ds \) \(=\) \(\ds \paren {-\gamma - 3 \ln 2 + \dfrac \pi 2} - \paren {-\gamma - 3 \ln 2 - \dfrac \pi 2 + 4}\) Digamma Function of Three Fourths and Digamma Function of Five Fourths
\(\ds \) \(=\) \(\ds \pi - 4\) grouping terms
\(\ds \leadsto \ \ \) \(\ds 4 + 4 \sum_{k \mathop = 1}^\infty \dfrac {\paren {-1}^k} {1 + 2 k}\) \(=\) \(\ds \pi\) adding $4$ to both sides
\(\ds \leadsto \ \ \) \(\ds 4 \times \paren {1 - \frac 1 3 + \frac 1 5 - \frac 1 7 + \cdots}\) \(=\) \(\ds \pi\)
\(\ds \leadsto \ \ \) \(\ds 4 \sum_{k \mathop = 0}^\infty \dfrac {\paren {-1}^k} {1 + 2 k}\) \(=\) \(\ds \pi\)

$\blacksquare$