Modulo Multiplication is Associative

From ProofWiki
Jump to: navigation, search

Theorem

Multiplication modulo $m$ is associative:

$\forall \left[\!\left[{x}\right]\!\right]_m, \left[\!\left[{y}\right]\!\right]_m, \left[\!\left[{z}\right]\!\right]_m \in \Z_m: \left({\left[\!\left[{x}\right]\!\right]_m \times_m \left[\!\left[{y}\right]\!\right]_m}\right) \times_m \left[\!\left[{z}\right]\!\right]_m = \left[\!\left[{x}\right]\!\right]_m \times_m \left({\left[\!\left[{y}\right]\!\right]_m \times_m \left[\!\left[{z}\right]\!\right]_m}\right)$.


Proof

Follows directly from the definition of multiplication modulo $m$:

\(\displaystyle \) \(\displaystyle \) \(\displaystyle \) \(\displaystyle \left({\left[\!\left[{x}\right]\!\right]_m \times_m \left[\!\left[{y}\right]\!\right]_m}\right) \times_m \left[\!\left[{z}\right]\!\right]_m\) \(=\) \(\displaystyle \) \(\displaystyle \left[\!\left[{x y}\right]\!\right]_m \times_m \left[\!\left[{z}\right]\!\right]_m\) \(\displaystyle \) \(\displaystyle \)                    
\(\displaystyle \) \(\displaystyle \) \(\displaystyle \) \(\displaystyle \) \(=\) \(\displaystyle \) \(\displaystyle \left[\!\left[{\left({x y}\right) z}\right]\!\right]_m\) \(\displaystyle \) \(\displaystyle \)                    
\(\displaystyle \) \(\displaystyle \) \(\displaystyle \) \(\displaystyle \) \(=\) \(\displaystyle \) \(\displaystyle \left[\!\left[{x \left({y z}\right)}\right]\!\right]_m\) \(\displaystyle \) \(\displaystyle \)                    
\(\displaystyle \) \(\displaystyle \) \(\displaystyle \) \(\displaystyle \) \(=\) \(\displaystyle \) \(\displaystyle \left[\!\left[{x}\right]\!\right]_m \times_m \left[\!\left[{y z}\right]\!\right]_m\) \(\displaystyle \) \(\displaystyle \)                    
\(\displaystyle \) \(\displaystyle \) \(\displaystyle \) \(\displaystyle \) \(=\) \(\displaystyle \) \(\displaystyle \left[\!\left[{x}\right]\!\right]_m \times_m \left({\left[\!\left[{y}\right]\!\right]_m \times_m \left[\!\left[{z}\right]\!\right]_m}\right)\) \(\displaystyle \) \(\displaystyle \)                    

$\blacksquare$


Sources