Open Ball Contains Open Ball Less Than Half Its Radius

From ProofWiki
Jump to navigation Jump to search

Therorem

Let $M = \struct {A, d}$ be a metric space.


Let $a, b \in A$.

Let $\epsilon, \delta \in \R_{>0}$ such that $\delta \le \dfrac \epsilon 2$.


Let $\map {B_\epsilon} a$ be the open $\epsilon$-ball on $a$.

Let $\map {B_\delta} b$ be the open $\delta$-ball on $b$.


Let $a \in \map {B_\delta} b$.


Then:

$\map {B_\delta} b \subseteq \map {B_\epsilon} a$


Proof

We have:

\(\ds \forall c \in \map {B_\delta} b: \, \) \(\ds \map d {a, c}\) \(\le\) \(\ds \map d {a, b} + \map d {b, c}\) Metric Space Axiom $(\text M 2)$: Triangle Inequality
\(\ds \) \(<\) \(\ds \delta + \map d {b, c}\) Definition of open $\delta$-ball and $a \in \map {B_\delta} b$
\(\ds \) \(<\) \(\ds \delta + \delta\) Definition of open $\delta$-ball and $c \in \map {B_\delta} b$
\(\ds \) \(\le\) \(\ds \dfrac \epsilon 2 + \dfrac \epsilon 2\) as $\delta \le \dfrac \epsilon 2$
\(\ds \) \(=\) \(\ds \epsilon\)
\(\ds \leadsto \ \ \) \(\ds \forall c \in \map {B_\delta} b: \, \) \(\ds c\) \(\in\) \(\ds \map {B_\epsilon} a\) Definition of open $\epsilon$-ball
\(\ds \leadsto \ \ \) \(\ds \map {B_\delta} b\) \(\subseteq\) \(\ds \map {B_\epsilon} a\) Definition of Subset

$\blacksquare$