Principal Left Ideal is Left Ideal

From ProofWiki
Jump to navigation Jump to search

Theorem

Let $\struct {R, +, \circ}$ be a ring with unity.

Let $a \in R$.


Let $Ra$ be the principal left ideal of $R$ generated by $a$.


Then $Ra$ is an left ideal of $R$.


Proof

We establish that $Ra$ is an left ideal of $R$, by verifying the conditions of Test for Left Ideal.


$Ra \ne \O$, as $1_R \circ a = a \in Ra$.


Let $x, y \in Ra$.

Then:

\(\ds \exists r, s \in R: \, \) \(\ds x\) \(=\) \(\ds r \circ a, y = s \circ a\)
\(\ds \leadsto \ \ \) \(\ds x + \paren {-y}\) \(=\) \(\ds r \circ a + \paren {-s \circ a}\) Product with Ring Negative
\(\ds \) \(=\) \(\ds \paren {r + \paren {-s} } \circ a\)
\(\ds \leadsto \ \ \) \(\ds x + \paren {-y}\) \(\in\) \(\ds Ra\)


Let $s \in Ra, x \in R$.

\(\ds s\) \(\in\) \(\ds Ra, x \in R\)
\(\ds \leadsto \ \ \) \(\ds \exists r \in R: \, \) \(\ds s\) \(=\) \(\ds r \circ a\)
\(\ds \leadsto \ \ \) \(\ds x \circ s\) \(=\) \(\ds x \circ r \circ a\)
\(\ds \) \(\in\) \(\ds Ra\)


Thus by Test for Left Ideal, $Ra$ is a left ideal of $R$.

$\blacksquare$

Also see