Product of Integral Multiples/Proof 2

From ProofWiki
Jump to navigation Jump to search

Theorem

Let $\struct {F, +, \times}$ be a field.

Let $a, b \in F$ and $m, n \in \Z$.


Then:

$\paren {m \cdot a} \times \paren {n \cdot b} = \paren {m n} \cdot \paren {a \times b}$

where $m \cdot a$ is as defined in Integral Multiple.


Proof

First let $m = 0$ or $n = 0$.

Without loss of generality, let $m = 0$.

The case where $n = 0$ follows the same lines.

We have:

\(\ds \forall a, b \in R: \forall n \in \Z_{>0}: \, \) \(\ds \paren {m \cdot a} \times \paren {n \cdot b}\) \(=\) \(\ds \paren {0 \cdot a} \times \paren {n \cdot b}\) Definition of $m$
\(\ds \) \(=\) \(\ds 0_F \times \paren {n \cdot b}\) Definition of Integral Multiple
\(\ds \) \(=\) \(\ds 0_F\) Definition of Field Zero
\(\ds \) \(=\) \(\ds 0_F \times \paren {a \times b}\) Definition of Field Zero
\(\ds \) \(=\) \(\ds 0 \cdot \paren {a \times b}\) Definition of Integral Multiple
\(\ds \) \(=\) \(\ds \paren {0 \times n} \cdot \paren {a \times b}\) $0$ is zero of $\Z$
\(\ds \) \(=\) \(\ds \paren {m \times n} \cdot \paren {a \times b}\) Definition of Integral Multiple

$\Box$


Next let $m > 0$ and $n > 0$.

\(\ds \forall a, b \in R: \forall m, n \in \Z_{>0}: \, \) \(\ds \paren {m \cdot a} \times \paren {n \cdot b}\) \(=\) \(\ds \paren {\sum_{i \mathop = 1}^m a} \times \paren {\sum_{i \mathop = 1}^n b}\) Definition of Integral Multiple
\(\ds \) \(=\) \(\ds \sum_{\substack {1 \mathop \le i \mathop \le m \\ 1 \mathop \le j \mathop \le n} } \paren {a \times b}\) General Distributivity Theorem
\(\ds \) \(=\) \(\ds \sum_{i \mathop = 1}^m \paren {\sum_{j \mathop = 1}^n \paren {a \times b} }\) Definition of Summation
\(\ds \) \(=\) \(\ds m \cdot \paren {n \cdot \paren {a \times b} }\) Definition of Integral Multiple
\(\ds \) \(=\) \(\ds \paren {m n} \cdot \paren {a \times b}\) Powers of Group Elements: Additive Notation

$\Box$


The results for $m < 0$ and $n < 0$ follow directly from Powers of Group Elements.

$\blacksquare$