Reciprocal of Hyperbolic Cosine Plus One

From ProofWiki
Jump to navigation Jump to search

Theorem

$\dfrac 1 {\cosh x + 1} = \dfrac 1 2 \sech^2 \dfrac x 2$


Proof

\(\ds \cosh x\) \(=\) \(\ds 2 \cosh^2 \frac x 2 - 1\) Double Angle Formula for Hyperbolic Cosine: Corollary $1$
\(\ds \leadstoandfrom \ \ \) \(\ds \cosh x + 1\) \(=\) \(\ds 2 \cosh^2 \frac x 2\) adding $1$ to both sides
\(\ds \leadstoandfrom \ \ \) \(\ds \frac 1 {\cosh x + 1}\) \(=\) \(\ds \frac 1 2 \frac 1 {\cosh^2 \frac x 2}\) taking the reciprocal of both sides
\(\ds \) \(=\) \(\ds \frac 1 2 \sech^2 \frac x 2\) Definition 2 of Hyperbolic Secant

$\blacksquare$


Also see