Sine of Integer Multiple of Argument/Formulation 6

From ProofWiki
Jump to navigation Jump to search

Theorem

For $n \in \Z$:

\(\ds \map \sin {n \theta}\) \(=\) \(\ds \paren {2 \sin \theta } \map \cos {\paren {n - 1 } \theta} + \map \sin {\paren {n - 2 } \theta}\)


Proof

\(\ds \map \sin {n \theta}\) \(=\) \(\ds \map \sin {\paren {n - 1 } \theta + \theta }\)
\(\ds \) \(=\) \(\ds \sin \theta \map \cos {\paren {n - 1 } \theta} + \cos \theta \map \sin {\paren {n - 1 } \theta}\) Sine of Sum
\(\ds \) \(=\) \(\ds \sin \theta \map \cos {\paren {n - 1 } \theta} + \cos \theta \paren { \sin \theta \map \cos {\paren {n - 2 } \theta} + \cos \theta \map \sin {\paren {n - 2 } \theta} }\) Sine of Sum
\(\ds \) \(=\) \(\ds \sin \theta \map \cos {\paren {n - 1 } \theta} + \sin \theta \cos \theta \map \cos {\paren {n - 2 } \theta} + \cos^2 \theta \map \sin {\paren {n - 2 } \theta}\)
\(\ds \) \(=\) \(\ds \sin \theta \map \cos {\paren {n - 1 } \theta} + \sin \theta \cos \theta \map \cos {\paren {n - 2 } \theta} + \paren {1 - \sin^2 \theta } \map \sin {\paren {n - 2 } \theta}\) Sum of Squares of Sine and Cosine
\(\ds \) \(=\) \(\ds \sin \theta \map \cos {\paren {n - 1 } \theta} + \sin \theta \paren { \cos \theta \map \cos {\paren {n - 2 } \theta} - \sin \theta \map \sin {\paren {n - 2 } \theta} } + \map \sin {\paren {n - 2 } \theta}\)
\(\ds \) \(=\) \(\ds \sin \theta \map \cos {\paren {n - 1 } \theta} + \sin \theta \map \cos {\paren {n - 1 } \theta} + \map \sin {\paren {n - 2 } \theta}\)
\(\ds \) \(=\) \(\ds \paren {2 \sin \theta } \map \cos {\paren {n - 1 } \theta} + \map \sin {\paren {n - 2 } \theta}\)

$\blacksquare$