Sum over k from 2 to Infinity of Zeta of k Over k Alternating in Sign/Proof 2

From ProofWiki
Jump to navigation Jump to search

Theorem

\(\ds \sum_{k \mathop = 2}^\infty \dfrac {\paren {-1}^k} k \map \zeta k\) \(=\) \(\ds \dfrac {\map \zeta 2} 2 - \dfrac {\map \zeta 3} 3 + \dfrac {\map \zeta 4} 4 - \dfrac {\map \zeta 5} 5 + \cdots\)
\(\ds \) \(=\) \(\ds \gamma\)


Proof

\(\ds \map \ln {\map \Gamma {x + 1} }\) \(=\) \(\ds -\gamma x + \sum_{k \mathop = 2}^{\infty} \dfrac {\map \zeta k \paren {-x}^k} k\) Power Series Expansion for Logarithm of Gamma Function
\(\ds \) \(=\) \(\ds -\gamma x + \dfrac {\map \zeta 2 x^2} 2 - \dfrac {\map \zeta 3 x^3} 3 + \dfrac {\map \zeta 4 x^4} 4 - \dfrac {\map \zeta 5 x^5} 5 + \cdots\)
\(\ds \leadsto \ \ \) \(\ds \map \ln {\map \Gamma {1 + 1} }\) \(=\) \(\ds -\gamma + \sum_{k \mathop = 2}^{\infty} \dfrac {\map \zeta k \paren {-1}^k} k\) setting $x = 1$
\(\ds \leadsto \ \ \) \(\ds 0\) \(=\) \(\ds -\gamma + \dfrac {\map \zeta 2} 2 - \dfrac {\map \zeta 3} 3 + \dfrac {\map \zeta 4} 4 - \dfrac {\map \zeta 5} 5 + \cdots\) $\map \Gamma 2 = 1$ and Natural Logarithm of 1 is 0
\(\ds \leadsto \ \ \) \(\ds \gamma\) \(=\) \(\ds \dfrac {\map \zeta 2} 2 - \dfrac {\map \zeta 3} 3 + \dfrac {\map \zeta 4} 4 - \dfrac {\map \zeta 5} 5 + \cdots\) rearranging

$\blacksquare$