Symmetric Difference on Power Set forms Abelian Group

From ProofWiki
Jump to: navigation, search

Theorem

Let $S$ be a set such that $\varnothing \subset S$ (i.e. $S$ is not empty).

Let $A * B$ be defined as the symmetric difference between $A$ and $B$.

Let $\mathcal P \left({S}\right)$ be the power set of $S$.


Then the algebraic structure $\left({\mathcal P \left({S}\right), *}\right)$ is an abelian group.


Proof

From Power Set Closed under Symmetric Difference, we have that $\left({\mathcal P \left({S}\right), *}\right)$ is closed.


The result follows directly from Set System Closed under Symmetric Difference is Abelian Group.

$\blacksquare$


Sources