Units of Ring Direct Product are Ring Direct Product of Units

From ProofWiki
Jump to navigation Jump to search

Theorem

Let $R_1, R_2, \ldots, R_m$ be rings with identity.



Then the following group isomorphism holds:

$\map U {R_1 \oplus R_2 \oplus \cdots \oplus R_n} \simeq \map U {R_1} \oplus \map U {R_2} \oplus \cdots \oplus \map U {R_n}$.




Proof

It suffices to prove the case $m = 2$.



By Definition of Ring Direct Sum the finite direct sum



is isomorphic to the finite direct product.




\(\ds \tuple {r_1, r_2}\) \(\in\) \(\ds \map U {R_1 \times R_2}\) Definition of Unit of Ring
\(\ds \leadstoandfrom \ \ \) \(\ds \tuple {r_1, r_2}\) \(\) \(\ds \) is invertible in $R_1 \times R_2$
\(\ds \leadstoandfrom \ \ \) \(\ds \exists \tuple {s_1, s_2} \in R_1 \times R_2: \, \) \(\ds \tuple {r_1, r_2} \tuple {s_1, s_2}\) \(=\) \(\ds \tuple {s_1, s_2} \tuple {r_1, r_2}\) \(\ds = \tuple {1_{R_1}, 1_{R_2} }\)
\(\ds \leadstoandfrom \ \ \) \(\ds \tuple {r_1 s_1, r_2 s_2}\) \(=\) \(\ds \tuple {s_1 r_1, s_2 r_2}\) \(\ds = \tuple {1_{R_1}, 1_{R_2} }\)
\(\ds \leadstoandfrom \ \ \) \(\ds r_1 s_1\) \(=\) \(\ds s_1 r_1\) \(\ds = 1_{R_1}\)
\(\, \ds \land \, \) \(\ds r_2 s_2\) \(=\) \(\ds s_2 r_2\) \(\ds = 1_{R_2}\)
\(\ds \leadstoandfrom \ \ \) \(\ds r_1\) \(\) \(\ds \) is invertible in $R_1$
\(\, \ds \land \, \) \(\ds r_2\) \(\) \(\ds \) is invertible in $R_2$
\(\ds \leadstoandfrom \ \ \) \(\ds r_1\) \(\in\) \(\ds \map U {R_1}\) Definition of Unit of Ring
\(\, \ds \land \, \) \(\ds r_2\) \(\in\) \(\ds \map U {R_2}\) Definition of Unit of Ring

$\blacksquare$