User:Leigh.Samphier/Matroids/Equivalence of Definitions of Matroid Base Axioms

From ProofWiki
Jump to navigation Jump to search



Theorem

Let $S$ be a finite set.

Let $\mathscr B$ be a non-empty set of subsets of $S$.


The following statements are equivalent:

Formulation 1

$\mathscr B$ is said to satisfy the base axiom if and only if:

\((\text B 1)\)   $:$     \(\ds \forall B_1, B_2 \in \mathscr B:\) \(\ds x \in B_1 \setminus B_2 \implies \exists y \in B_2 \setminus B_1 : \paren {B_1 \setminus \set x} \cup \set y \in \mathscr B \)      

Formulation 2

$\mathscr B$ is said to satisfy the base axiom if and only if:

\((\text B 2)\)   $:$     \(\ds \forall B_1, B_2 \in \mathscr B:\) \(\ds x \in B_1 \setminus B_2 \implies \exists y \in B_2 \setminus B_1 : \paren {B_1 \cup \set y} \setminus \set x \in \mathscr B \)      

Formulation 3

$\mathscr B$ is said to satisfy the base axiom if and only if:

\((\text B 3)\)   $:$     \(\ds \forall B_1, B_2 \in \mathscr B:\) \(\ds \exists \text{ a bijection } \pi : B_1 \setminus B_2 \to B_2 \setminus B_1 : \forall x \in B_1 \setminus B_2 : \paren {B_1 \setminus \set x } \cup \set {\map \pi x} \in \mathscr B \)      

Formulation 4

$\mathscr B$ is said to satisfy the base axiom if and only if:

\((\text B 4)\)   $:$     \(\ds \forall B_1, B_2 \in \mathscr B:\) \(\ds x \in B_1 \setminus B_2 \implies \exists y \in B_2 \setminus B_1 : \paren {B_1 \setminus \set x} \cup \set y, \paren {B_2 \setminus \set y} \cup \set x \in \mathscr B \)      

Formulation 5

$\mathscr B$ is said to satisfy the base axiom if and only if:

\((\text B 5)\)   $:$     \(\ds \forall B_1, B_2 \in \mathscr B:\) \(\ds x \in B_1 \setminus B_2 \implies \exists y \in B_2 \setminus B_1 : \paren {B_2 \setminus \set y} \cup \set x \in \mathscr B \)      

Formulation 6

$\mathscr B$ is said to satisfy the base axiom if and only if:

\((\text B 6)\)   $:$     \(\ds \forall B_1, B_2 \in \mathscr B:\) \(\ds x \in B_1 \setminus B_2 \implies \exists y \in B_2 \setminus B_1 : \paren {B_2 \cup \set x} \setminus \set y \in \mathscr B \)      

Formulation 7

$\mathscr B$ is said to satisfy the base axiom if and only if:

\((\text B 7)\)   $:$     \(\ds \forall B_1, B_2 \in \mathscr B:\) \(\ds \exists \text{ a bijection } \pi : B_1 \setminus B_2 \to B_2 \setminus B_1 : \forall x \in B_1 \setminus B_2 : \paren {B_2 \setminus \set {\map \pi x} } \cup \set x \in \mathscr B \)      



Proof

Formulation $1$ iff Formulation $2$

Formulation $1$ holds if and only if formulation $2$ holds follows immediately from the User:Leigh.Samphier/Matroids/Corollary of Set Difference Then Union Equals Union Then Set Difference.

$\Box$


Formulation $1$ iff Formulation $3$

Necessary Condition

Follows immediately from:


Sufficient Condition

By choosing $y = \map \pi x$ in formulation $3$, formulation $1$ follows immediately.

$\Box$


Formulation $1$ iff Formulation $4$

Necessary Condition

Let $\mathscr B$ satisfy formulation $1$ of base axiom:

\((\text B 1)\)   $:$     \(\ds \forall B_1, B_2 \in \mathscr B:\) \(\ds x \in B_1 \setminus B_2 \implies \exists y \in B_2 \setminus B_1 : \paren {B_1 \setminus \set x} \cup \set y \in \mathscr B \)      


From User:Leigh.Samphier/Matroids/Matroid Bases Iff Satisfies Formulation 1 of Matroid Base Axiom:

there exists a matroid $M = \struct{S, \mathscr I}$ such that $\mathscr B$ is the set of bases of $M$.


Let $B_1, B_2 \in \mathscr B$.

Let $x \in B_1 \setminus B_2$.


From Matroid Base Union External Element has Fundamental Circuit:

there exists a fundamental circuit $\map C {x, B_2}$ of $M$ such that $x \in \map C {x, B_2} \subseteq B_2 \cup \set x$

By definition of set intersection:

$x \in B_1 \cap \map C {x, B_2}$

From Element of Matroid Base and Circuit has Substitute:

$\exists y \in \map C {x, B_2} \setminus B_1 : \paren{B_1 \setminus \set x} \cup \set y \in \mathscr B$

We have:

\(\ds y\) \(\in\) \(\ds \map C {x, B_2} \setminus B_1\)
\(\ds \) \(\subseteq\) \(\ds \map C {x, B_2} \setminus \set x\) Set Difference with Subset is Superset of Set Difference
\(\ds \) \(\subseteq\) \(\ds \paren{B_2 \cup \set x} \setminus \set x\) Set Difference over Subset
\(\ds \) \(\subseteq\) \(\ds B_2 \setminus \set x\) Set Difference with Union is Set Difference
\(\ds \) \(\subseteq\) \(\ds B_2\) Set Difference is Subset

From Matroid Base Substitution From Fundamental Circuit:

$\paren{B_2 \setminus \set y} \cup \set x \in \mathscr B$


It follows that $\mathscr B$ satisfies formulation $4$ of base axiom:

\((\text B 4)\)   $:$     \(\ds \forall B_1, B_2 \in \mathscr B:\) \(\ds x \in B_1 \setminus B_2 \implies \exists y \in B_2 \setminus B_1 : \paren {B_1 \setminus \set x} \cup \set y, \paren {B_2 \setminus \set y} \cup \set x \in \mathscr B \)      


Sufficient Condition

Follows immediately from formulation $4$ and formulation $1$.

$\Box$


Formulation $1$ iff Formulation $5$

Follows immediately from:

$\Box$


Formulation $3$ iff Formulation $7$

Necessary Condition

Let $\mathscr B$ satisfy formulation $3$ of base axiom:

\((\text B 3)\)   $:$     \(\ds \forall B_1, B_2 \in \mathscr B:\) \(\ds \exists \text{ a bijection } \pi : B_1 \setminus B_2 \to B_2 \setminus B_1 : \forall x \in B_1 \setminus B_2 : \paren {B_1 \setminus \set x } \cup \set {\map \pi x} \in \mathscr B \)      


Let $B_1, B_2 \in \mathscr B$.

From $(\text B 3)$:

$\exists \text{ a bijection } \pi : B_2 \setminus B_1 \to B_1 \setminus B_2 : \forall y \in B_2 \setminus B_1 : \paren {B_2 \setminus \set y } \cup \set {\map \pi y} \in \mathscr B$


Let $\pi^{-1} : B_1 \setminus B_2 \to B_2 \setminus B_1$ denote the inverse mapping of $\pi$.

From Inverse of Bijection is Bijection, $\pi^{-1}$ is a bijection.

From Inverse Element of Bijection:

$\forall x \in B_1 \setminus B_2 : \map {\pi^{-1}} x = y \iff \map \pi y = x$

Hence:

$\forall x \in B_1 \setminus B_2 : \paren {B_1 \setminus \set{\map {\pi^{-1}} x} } \cup \set x = \paren {B_1 \setminus \set y} \cup \set {\map \pi y} \in \mathscr B$


Let $\mathscr B$ satisfy formulation $7$ of base axiom:

\((\text B 7)\)   $:$     \(\ds \forall B_1, B_2 \in \mathscr B:\) \(\ds \exists \text{ a bijection } \pi : B_1 \setminus B_2 \to B_2 \setminus B_1 : \forall x \in B_1 \setminus B_2 : \paren {B_2 \setminus \set {\map \pi x} } \cup \set x \in \mathscr B \)      

Sufficient Condition

Let $\mathscr B$ satisfy formulation $7$ of base axiom:

\((\text B 7)\)   $:$     \(\ds \forall B_1, B_2 \in \mathscr B:\) \(\ds \exists \text{ a bijection } \pi : B_1 \setminus B_2 \to B_2 \setminus B_1 : \forall x \in B_1 \setminus B_2 : \paren {B_2 \setminus \set {\map \pi x} } \cup \set x \in \mathscr B \)      


Let $B_1, B_2 \in \mathscr B$.

From $(\text B 7)$:

$\exists \text{ a bijection } \pi : B_2 \setminus B_1 \to B_1 \setminus B_2 : \forall y \in B_2 \setminus B_1 : \paren {B_1 \setminus \set {\map \pi y} } \cup \set y \in \mathscr B$


Let $\pi^{-1} : B_1 \setminus B_2 \to B_2 \setminus B_1$ denote the inyverse mapping of $\pi$.

From Inverse of Bijection is Bijection, $\pi^{-1}$ is a bijection.

From Inverse Element of Bijection:

$\forall x \in B_1 \setminus B_2 : \map {\pi^{-1}} x = y \iff \map \pi y = x$

Hence:

$\forall x \in B_1 \setminus B_2 : \paren {B_1 \setminus \set x } \cup \set{\map {\pi^{-1}} x} = \paren {B_1 \setminus \set {\map \pi y} } \cup \set y \in \mathscr B$


Let $\mathscr B$ satisfy formulation $3$ of base axiom:

\((\text B 3)\)   $:$     \(\ds \forall B_1, B_2 \in \mathscr B:\) \(\ds \exists \text{ a bijection } \pi : B_1 \setminus B_2 \to B_2 \setminus B_1 : \forall x \in B_1 \setminus B_2 : \paren {B_1 \setminus \set x } \cup \set {\map \pi x} \in \mathscr B \)      

$\Box$


Formulation $5$ iff Formulation $6$

Formulation $5$ holds if and only if formulation $6$ holds follows immediately from the User:Leigh.Samphier/Matroids/Corollary of Set Difference Then Union Equals Union Then Set Difference.

$\blacksquare$