User:Leigh.Samphier/Matroids/Matroid Bases Satisfy Formulation 7 of Matroid Base Axiom

From ProofWiki
Jump to navigation Jump to search



Theorem

Let $M = \struct{S, \mathscr I}$ be a matroid.

Let $\mathscr B$ be the set of bases of the matroid $M$.


Then $\mathscr B$ satisfies formulation $7$ of base axiom:

\((\text B 7)\)   $:$     \(\ds \forall B_1, B_2 \in \mathscr B:\) \(\ds \exists \text{ a bijection } \pi : B_1 \setminus B_2 \to B_2 \setminus B_1 : \forall x \in B_1 \setminus B_2 : \paren {B_2 \setminus \set {\map \pi x} } \cup \set x \in \mathscr B \)      


Proof

Let $\mathscr C$ denote the set of circuits of $M$.

From Circuits of Matroid iff Matroid Circuit Axioms, $\mathscr C$ satisifies:

\((\text C 1)\)   $:$   \(\ds \O \notin \mathscr C \)      
\((\text C 2)\)   $:$     \(\ds \forall C_1, C_2 \in \mathscr C:\) \(\ds C_1 \ne C_2 \implies C_1 \nsubseteq C_2 \)      
\((\text C 3)\)   $:$     \(\ds \forall C_1, C_2 \in \mathscr C:\) \(\ds C_1 \ne C_2 \land z \in C_1 \cap C_2 \implies \exists C_3 \in \mathscr C : C_3 \subseteq \paren {C_1 \cup C_2} \setminus \set z \)      


Lemma 1

Let $n \in \N_{>0}$.

Let $C_1, C_2, \ldots, C_n \in \mathscr C$ satisfy:

$\forall 0 \le k \le n : C_k \nsubseteq \ds \bigcup_{i \ne k} C_i$

Let:

$A \subseteq S : \size A < n$

Let $r = \size A$.


Then:

$\ds \exists D_1, \ldots, D_{n - r} \in \mathscr C : \bigcup_{i = 1}^{n - r} D_i \subseteq \paren{\bigcup_{i = 1}^{n} C_i} \setminus A$

$\Box$


Let $B_1, B_2 \in \mathscr B$.

From Matroid Base Union External Element has Fundamental Circuit:

for each $x \in B_1 \setminus B_2$ let $C_x$ denote the fundamental circuit of $x$ in $B_2$


By definition of the fundamental circuit of $x$ in $B_2$:

$\forall y \in B_1 \setminus B_2 : y \ne x: x \notin C_y$

It follows that:

$\forall x \in B_1 \setminus B_2: C_x \nsubseteq \ds \bigcup_{y \ne x} C_y$

Hence lemma 1 can be applied to $\set{C_x : x \in B_1 \setminus B_2}$


For each $x \in B_1 \setminus B_2$ let:

$(1): \quad C^\prime_x = C_x \cap \paren{B_2 \setminus B_1}$

From User:Leigh.Samphier/Matroids/Subset Intersection Set DIfference is Empty Iff Subset of Second Set:

$C^\prime_x = \O \iff C_x \subseteq B_1$

From Subset of Set Difference iff Disjoint Set:

$C^\prime_x \ne \O$

From Matroid Base Substitution From Fundamental Circuit:

$(2): \quad \forall y \in C^\prime_x: \paren{B_2 \setminus \set y} \cup \set x \in \mathscr B$


Consider the set of sets:

$\set{C^\prime_x : x \in B_1 \setminus B_2}$

Aiming for a contradiction, suppose $\set{x_1, \ldots, x_n}$ is a finite subset of $B_1 \setminus B_2$ of cardinality $n$ such that:

$\size{C^\prime_{x_1} \cup \ldots \cup C^\prime_{x_1}} < n$


Let $D = C^\prime_{x_1} \cup \ldots \cup C^\prime_{x_1}$.

Applying lemma 1 to $\set{C_x : x \in B_1 \setminus B_2}$ and $D$:

$\exists C \in \mathscr C : C \subseteq \ds \paren{\bigcup_{k =1}^n C_{x_k}} \setminus D$


Note that:

\(\ds \forall x \in B_1: \, \) \(\ds B_2 \setminus B_1\) \(=\) \(\ds B_2 \setminus \paren{B_1 \cup \set x}\) Union with Superset is Superset
\(\ds \) \(=\) \(\ds \paren{B_2 \cup \set x} \setminus \paren{B_1 \cup \set x}\) Set Difference with Union
\(\text {(3)}: \quad\) \(\ds \) \(=\) \(\ds \paren{B_2 \cup \set x} \setminus B_1\) Union with Superset is Superset


We have:

\(\ds \paren{\bigcup_{k =1}^n C_{x_k} } \setminus D\) \(=\) \(\ds \paren{\bigcup_{k =1}^n C_{x_k} } \setminus \paren{\bigcup_{k =1}^n C^\prime_{x_k} }\) Definition of $D$
\(\ds \) \(=\) \(\ds \paren{\bigcup_{k =1}^n C_{x_k} } \setminus \paren{\bigcup_{k =1}^n C_{x_k} \cap \paren{B_2 \setminus B_1 } }\) Definition of $C^\prime_{x_k}$
\(\ds \) \(=\) \(\ds \paren{\bigcup_{k =1}^n C_{x_k} } \setminus \paren{\bigcup_{k =1}^n C_{x_k} \cap \paren{\paren{B_2 \cup \set x} \setminus B_1 } }\) from $(3)$
\(\ds \) \(=\) \(\ds \paren{\bigcup_{k =1}^n C_{x_k} } \setminus \paren{\bigcup_{k =1}^n \paren{C_{x_k} \cap \paren{B_2 \cup \set x} } \setminus B_1 }\) Intersection with Set Difference is Set Difference with Intersection
\(\ds \) \(=\) \(\ds \paren{\bigcup_{k =1}^n C_{x_k} } \setminus \paren{\bigcup_{k =1}^n C_{x_k} \setminus B_1 }\) Intersection with Subset is Subset
\(\ds \) \(=\) \(\ds \paren{\bigcup_{k =1}^n C_{x_k} } \setminus \paren{\paren{\bigcup_{k =1}^n C_{x_k} } \setminus B_1 }\) Set Difference is Right Distributive over Union
\(\ds \) \(=\) \(\ds \paren{\bigcup_{k =1}^n C_{x_k} } \cap B_1\) Set Difference with Set Difference
\(\ds \) \(\subseteq\) \(\ds B_1\) Intersection is Subset


From Subset Relation is Transitive:

$C \subseteq B_1$

This contradicts User:Leigh.Samphier/Matroids/Matroid Base Contains No Circuit.


Hence for all finite $F \subseteq B_1 \setminus B_2$:

$\size F \le \size{\ds \bigcup_{x \in F} C^\prime_x}$

That is, the indexed family of finite sets $\set{C^\prime_x : x \in B_1 \setminus B_2}$ satisfies the marriage condition.


From Hall's Marriage Theorem:

there exists an injection $\pi : B_1 \setminus B_2 \to \ds \bigcup_{x \in F} C^\prime_x$ such that:
$\forall x \in B_1 \setminus B_2: \map \pi x \in C^\prime_x$

From $(1)$ and $(2)$:

$\forall x \in B_1 \setminus B_2 : \map \pi x \in B_2 \setminus B_1 : \paren{B_2 \setminus \set {\map \pi x}} \cup \set x \in \mathscr B$


We have:

\(\ds \size{\pi \sqbrk {B_1 \setminus B_2} }\) \(=\) \(\ds \size{B_1 \setminus B_2}\) Cardinality of Image of Injection
\(\ds \) \(=\) \(\ds \size{B_1 \setminus \paren{B_1 \cap B_2} }\) Set Difference with Intersection is Difference
\(\ds \) \(=\) \(\ds \size{B_1} - \size{B_1 \cap B_2}\) Cardinality of Set Difference with Subset
\(\ds \) \(=\) \(\ds \size{B_2} - \size{B_1 \cap B_2}\) All Bases of Matroid have same Cardinality
\(\ds \) \(=\) \(\ds \size{B_2 \setminus \paren{B_1 \cap B_2} }\) Cardinality of Set Difference with Subset
\(\ds \) \(=\) \(\ds \size{B_2 \setminus B_1 }\) Set Difference with Intersection is Difference


From the contrapositive statement of Cardinality of Proper Subset of Finite Set:

$\pi \sqbrk {B_1 \setminus B_2} = B_2 \setminus B_1$

Hence:

$\pi$ is a bijection


It follows that $\mathscr B$ satisfies formulation $7$ of base axiom:

\((\text B 7)\)   $:$     \(\ds \forall B_1, B_2 \in \mathscr B:\) \(\ds \exists \text{ a bijection } \pi : B_1 \setminus B_2 \to B_2 \setminus B_1 : \forall x \in B_1 \setminus B_2 : \paren {B_2 \setminus \set {\map \pi x} } \cup \set x \in \mathscr B \)      

$\blacksquare$


Sources