Archimedes' Limits to Value of Pi/Lemma 4

From ProofWiki
Jump to navigation Jump to search

Lemma for Archimedes' Limits to Value of Pi

$\pi > \dfrac {223} {71}$


Proof

Lower bound
APi Lower.png

Let $\triangle BCA$ be a right triangle inscribed in the same circle $O$ from above with diameter $AB = 1$.


We define the following angles:

\(\ds \angle BAC: \, \) \(\ds \theta_1\) \(=\) \(\ds 30 \degrees\)
\(\ds \angle BAD: \, \) \(\ds \theta_2\) \(=\) \(\ds 15 \degrees\)
\(\ds \angle BAE: \, \) \(\ds \theta_3\) \(=\) \(\ds 7 \tfrac 1 2 \degrees\)
\(\ds \angle BAF: \, \) \(\ds \theta_4\) \(=\) \(\ds 3 \tfrac 3 4 \degrees\)
\(\ds \angle BAG: \, \) \(\ds \theta_5\) \(=\) \(\ds 1 \tfrac 7 8 \degrees\)


Using the same argument as we used previously, $\triangle BCA$ has sides in the ratio:

$BC : AB : AC = 1 : 2 : \sqrt 3$

$BC$ subtends a central angle of $2 \theta_1 = 120 \degrees$, so it corresponds to one side of an inscribed hexagon.


The total perimeter $p$ of the inscribed hexagon is:

$p = 6 \cdot BC$

The ratio of the perimeter of the inscribed hexagon to the diameter of the circle is:

$\dfrac p {AB} = \dfrac {6 BC} {AB} = 6 \cdot \dfrac {BC} {AB}$

Since $AB = 1$, the perimeter of the inscribed hexagon is:

$p = 6 \cdot \dfrac 1 2 = 3$

This is an initial lower bound on $\pi$.


We now continue by doubling the number of sides of the inscribed regular polygon to refine our estimate.

We have:

\(\ds \dfrac {AB} {BC}: \, \) \(\ds \csc \theta_1\) \(=\) \(\ds 2\) Cosecant of $30 \degrees$
\(\ds \dfrac {AC} {BC}: \, \) \(\ds \cot \theta_1\) \(=\) \(\ds \sqrt 3\) Cotangent of $30 \degrees$


We will now use the following rational approximation for $\sqrt 3$, whose decimal value is approximately $1.73205$:

$\dfrac {AC} {BC} = \cot \theta_1 < \dfrac {1351} {780}$

This approximation is about $1.7320513$, which is slightly larger than the true value.

The cosecant of $\theta_1$ is $2$ so:

$\dfrac {AB} {BC} = \dfrac {1560} {780}$


Thus, the initial lower bound estimate for $\pi$ is:

\(\ds \pi\) \(>\) \(\ds \dfrac 6 {\csc \theta_1}\)
\(\ds \) \(=\) \(\ds \dfrac 6 2\) as $\csc \theta_1 = 2$
\(\ds \leadsto \ \ \) \(\ds \pi\) \(>\) \(\ds 3\) First Iteration Lower Bound Estimate


Second Iteration Lower Bound Calculation
\(\ds \cot \theta_1\) \(<\) \(\ds \dfrac {1351} {780}\) from prior step
\(\ds \csc \theta_1\) \(=\) \(\ds 2\) from prior step
\(\ds \cot \theta_2\) \(<\) \(\ds 2 + \dfrac {1351} {780}\) from Lemma 1 and $\theta_2 = \dfrac {\theta_1} 2$
\(\ds \) \(=\) \(\ds \dfrac {1560} {780} + \dfrac {1351} {780}\)
\(\ds \leadsto \ \ \) \(\ds \cot \theta_2\) \(<\) \(\ds \dfrac {2911} {780}\)
\(\ds \leadsto \ \ \) \(\ds \csc \theta_2\) \(<\) \(\ds \dfrac 1 {780} \cdot \sqrt {2911^2 + 780^2}\) from Lemma 2, $p = 2911$ and $q = 780$
\(\ds \) \(=\) \(\ds \dfrac 1 {780} \cdot \sqrt {9 \, 082 \, 321}\)
\(\ds \leadsto \ \ \) \(\ds \csc \theta_2\) \(<\) \(\ds \dfrac {3013 \tfrac 3 4} {780}\)

We see that:

$3013 \tfrac 3 4 = 3013.75$ is higher than the square root of $9 \, 082 \, 321$ which is approximately $3013.689$


Thus, our second lower bound estimate for $\pi$ is:

\(\ds \pi\) \(>\) \(\ds \dfrac {12} {\csc \theta_2}\)
\(\ds \) \(>\) \(\ds \dfrac {12} {\dfrac {3013 \tfrac 3 4} {780} }\)
\(\ds \leadsto \ \ \) \(\ds \pi\) \(>\) \(\ds \dfrac {12 \times 780} {3013 \tfrac 3 4}\)
\(\ds \) \(=\) \(\ds \dfrac {12 \times 780 \times 4} {3013 \tfrac 3 4 \times 4}\) multiplying top and bottom by $4$
\(\ds \) \(=\) \(\ds \dfrac {37440 / 5} {12415 / 5}\) dividing top and bottom by $5$
\(\ds \leadsto \ \ \) \(\ds \pi\) \(>\) \(\ds \dfrac {7488} {2411}\) Second Iteration Lower Bound Estimate
\(\ds \leadsto \ \ \) \(\ds \pi\) \(>\) \(\ds 3.1057\)


Third Iteration Lower Bound Calculation
\(\ds \cot \theta_2\) \(<\) \(\ds \dfrac {2911} {780}\) From prior step
\(\ds \csc \theta_2\) \(<\) \(\ds \dfrac {3013 \tfrac 3 4} {780}\) From prior step
\(\ds \cot \theta_3\) \(<\) \(\ds \dfrac {2911} {780} + \dfrac {3013 \tfrac 3 4} {780}\) from Lemma 1 and $\theta_3 = \dfrac {\theta_2} 2$
\(\ds \leadsto \ \ \) \(\ds \cot \theta_3\) \(<\) \(\ds \dfrac {5924 \tfrac 3 4} {780}\)
\(\ds \) \(=\) \(\ds \dfrac {5924 \tfrac 3 4 \times 4} {780 \times 4}\) multiplying top and bottom by $4$
\(\ds \) \(=\) \(\ds \dfrac {23699 / 13} {3120 / 13}\) dividing top and bottom by $13$
\(\ds \leadsto \ \ \) \(\ds \cot \theta_3\) \(<\) \(\ds \dfrac {1823} {240}\)
\(\ds \leadsto \ \ \) \(\ds \csc \theta_3\) \(<\) \(\ds \dfrac 1 {240} \cdot \sqrt {1823^2 + 240^2}\) from Lemma 2, $p = 1823$ and $q = 240$
\(\ds \) \(=\) \(\ds \dfrac 1 {240} \cdot \sqrt {3 \, 380 \, 929}\)
\(\ds \leadsto \ \ \) \(\ds \csc \theta_3\) \(<\) \(\ds \dfrac {1838 \tfrac 9 {11} } {240}\)

We see that:

$1838 \tfrac 9 {11} = 1838.818$ is higher than the square root of $3 \, 380 \, 929$ which is approximately $1838.730$


Thus, our third lower bound estimate for $\pi$ is:

\(\ds \pi\) \(>\) \(\ds \dfrac {24} {\csc \theta_3}\)
\(\ds \) \(>\) \(\ds \dfrac {24} {\dfrac {1838 \tfrac 9 {11} } {240} }\)
\(\ds \leadsto \ \ \) \(\ds \pi\) \(>\) \(\ds \dfrac {24 \times 240} {1838 \tfrac 9 {11} }\)
\(\ds \) \(=\) \(\ds \dfrac {24 \times 240 \times 11} {1838 \tfrac 9 {11} \times 11}\) multiplying top and bottom by $11$
\(\ds \leadsto \ \ \) \(\ds \pi\) \(>\) \(\ds \dfrac {63 \, 360} {20 \, 227}\) Third Iteration Lower Bound Estimate
\(\ds \leadsto \ \ \) \(\ds \pi\) \(>\) \(\ds 3.1324\)


Fourth Iteration Lower Bound Calculation
\(\ds \cot \theta_3\) \(<\) \(\ds \dfrac {1823} {240}\) from prior step
\(\ds \csc \theta_3\) \(<\) \(\ds \dfrac {1838 \tfrac 9 {11} } {240}\) from prior step
\(\ds \cot \theta_4\) \(<\) \(\ds \dfrac {1823} {240} + \dfrac {1838 \tfrac 9 {11} } {240}\) from Lemma 1 and $\theta_4 = \dfrac {\theta_3} 2$
\(\ds \leadsto \ \ \) \(\ds \cot \theta_4\) \(<\) \(\ds \dfrac {3661 \tfrac 9 {11} } {240}\)
\(\ds \) \(=\) \(\ds \dfrac {3661 \tfrac 9 {11} \times 11} {240 \times 11}\) multiplying top and bottom by $11$
\(\ds \) \(=\) \(\ds \dfrac {40 \, 280 / 40} {2640 / 40}\) dividing top and bottom by $40$
\(\ds \leadsto \ \ \) \(\ds \cot \theta_4\) \(<\) \(\ds \dfrac {1007} {66}\)
\(\ds \leadsto \ \ \) \(\ds \csc \theta_4\) \(<\) \(\ds \dfrac 1 {66} \cdot \sqrt {1007^2 + 66^2}\) from Lemma 2 and $p = 1007$ and $q = 66$
\(\ds \) \(=\) \(\ds \dfrac 1 {66} \cdot \sqrt {1 \, 018 \, 405}\)
\(\ds \leadsto \ \ \) \(\ds \csc \theta_4\) \(<\) \(\ds \dfrac {1009 \tfrac 1 6} {66}\)

We see that:

$1009 \tfrac 1 6 > 1009.166$ is higher than the square root of $1 \, 018 \, 405$ which is approximately $1009.161$.


Thus, our fourth lower bound estimate for $\pi$ is:

\(\ds \pi\) \(>\) \(\ds \dfrac {48} {\csc \theta_4}\)
\(\ds \) \(>\) \(\ds 48 \div \dfrac {1009 \tfrac 1 6} {66}\)
\(\ds \) \(=\) \(\ds \dfrac {48 \times 66} {1009 \tfrac 1 6}\)
\(\ds \) \(=\) \(\ds \dfrac {48 \times 66 \times 6} {1009 \tfrac 1 6 \times 6}\) multiplying top and bottom by $6$
\(\ds \leadsto \ \ \) \(\ds \pi\) \(>\) \(\ds \dfrac {19 \, 008} {6055}\) Fourth Iteration Lower Bound Estimate
\(\ds \leadsto \ \ \) \(\ds \pi\) \(>\) \(\ds 3.1392\)


Fifth Iteration Lower Bound Calculation
\(\ds \cot \theta_4\) \(<\) \(\ds \dfrac {1007} {66}\) from prior step
\(\ds \csc \theta_4\) \(<\) \(\ds \dfrac {1009 \tfrac 1 6} {66}\) from prior step
\(\ds \cot \theta_5\) \(<\) \(\ds \dfrac {1007} {66} + \dfrac {1009 \tfrac 1 6} {66}\) from Lemma 1 and $\theta_5 = \dfrac {\theta_4} 2$
\(\ds \leadsto \ \ \) \(\ds \cot \theta_5\) \(<\) \(\ds \dfrac {2016 \tfrac 1 6} {66}\)
\(\ds \leadsto \ \ \) \(\ds \csc \theta_5\) \(<\) \(\ds \dfrac 1 {66} \cdot \sqrt {\paren {2016 \tfrac 1 6}^2 + 66^2}\) from Lemma 2 and $p = 2016 \tfrac 1 6$ and $q = 66$
\(\ds \) \(=\) \(\ds \dfrac 1 {66} \cdot \sqrt {4 \, 069 \, 284.03}\)
\(\ds \leadsto \ \ \) \(\ds \csc \theta_5\) \(<\) \(\ds \dfrac {2017 \tfrac 1 4} {66}\)

We see that:

$2017 \tfrac 1 4 = 2017.25$ is higher than the square root of $4 \, 069 \, 284.03$ which is approximately $2017.247$.


Thus, our fifth lower bound estimate for $\pi$ is:

\(\ds \pi\) \(>\) \(\ds \dfrac {96} {\csc \theta_5}\)
\(\ds \) \(>\) \(\ds 96 \div \dfrac {2017 \tfrac 1 4} {66}\)
\(\ds \) \(=\) \(\ds \dfrac {96 \times 66} {2017 \tfrac 1 4}\)
\(\ds \) \(=\) \(\ds \dfrac {96 \times 66 \times 4} {2017 \tfrac 1 4 \times 4}\) multiplying top and bottom by $6$
\(\ds \leadsto \ \ \) \(\ds \pi\) \(>\) \(\ds \dfrac {25 \, 344} {8069}\) which is approximately $3.140910$
\(\ds \leadsto \ \ \) \(\ds \pi\) \(>\) \(\ds \dfrac {223} {71}\) Fifth Iteration Lower Bound Estimate
\(\ds \leadsto \ \ \) \(\ds \pi\) \(>\) \(\ds 3.1408\)

$\Box$