B-Algebra is Left Cancellable

From ProofWiki
Jump to navigation Jump to search

Theorem

Let $\struct {X, \circ}$ be a $B$-algebra.

Then $\circ$ is a left cancellable operation.


Proof

Let $x, y, z \in X$:

\(\ds x \circ y\) \(=\) \(\ds x \circ z\)
\(\ds \leadstoandfrom \ \ \) \(\ds 0 \circ \paren {x \circ y}\) \(=\) \(\ds 0 \circ \paren {x \circ z}\) $0$ in $B$-Algebra is Left Cancellable Element
\(\ds \leadstoandfrom \ \ \) \(\ds \paren {0 \circ \paren {0 \circ y} } \circ x\) \(=\) \(\ds \paren {0 \circ \paren {0 \circ z} } \circ x\) Identity: $x \circ \paren {y \circ z} = \paren {x \circ \paren {0 \circ z} } \circ y$
\(\ds \leadstoandfrom \ \ \) \(\ds \paren {0 \circ y} \circ x\) \(=\) \(\ds \paren {0 \circ z} \circ x\) $0$ in $B$-Algebra is Left Cancellable Element
\(\ds \leadstoandfrom \ \ \) \(\ds y \circ x\) \(=\) \(\ds z \circ x\) $0$ in $B$-Algebra is Left Cancellable Element
\(\ds \leadstoandfrom \ \ \) \(\ds y\) \(=\) \(\ds z\) $B$-Algebra is Right Cancellable

Hence the result.

$\blacksquare$