Category:Definitions/Modulo Arithmetic
Jump to navigation
Jump to search
This category contains definitions related to Modulo Arithmetic.
Related results can be found in Category:Modulo Arithmetic.
Modulo arithmetic is the branch of abstract algebra which studies the residue class of integers under a modulus.
As such it can also be considered to be a branch of number theory.
Subcategories
This category has the following 6 subcategories, out of 6 total.
Pages in category "Definitions/Modulo Arithmetic"
The following 39 pages are in this category, out of 39 total.
C
- Definition:Congruence (Number Theory)
- Definition:Congruence (Number Theory)/Historical Note
- Definition:Congruence (Number Theory)/Integer Multiple
- Definition:Congruence (Number Theory)/Integers
- Definition:Congruence (Number Theory)/Integers/Integer Multiple
- Definition:Congruence (Number Theory)/Integers/Modulo Operation
- Definition:Congruence (Number Theory)/Integers/Remainder after Division
- Definition:Congruence (Number Theory)/Modulo Operation
- Definition:Congruence (Number Theory)/Modulo Zero
- Definition:Congruence (Number Theory)/Modulus
- Definition:Congruence (Number Theory)/Notation
- Definition:Congruence (Number Theory)/Remainder after Division
- Definition:Congruence (Number Theory)/Residue
- Definition:Congruence Class Modulo m
- Definition:Congruence Modulo Integer
- Definition:Congruence Modulo Zero
M
- Definition:Modular Arithmetic
- Definition:Modulo 0
- Definition:Modulo 1
- Definition:Modulo Arithmetic
- Definition:Modulo Operation
- Definition:Modulo Operation/Modulo One
- Definition:Modulo Operation/Modulo Zero
- Definition:Modulo Subtraction
- Definition:Modulus of Congruence
- Definition:Multiplicative Monoid of Integers Modulo m