Definition:Modulo Division/Polynomials

From ProofWiki
Jump to navigation Jump to search

Definition

Let $\map f x$ and $\map g x$ be integral polynomials.

The operation of polynomial division modulo $m$ is defined as:

$\map f x \div_m \map g x$ equals the integral polynomial $\map h x$ such that:
$\map g x \times_m \map h x \equiv \map f x \pmod m$

where:

$m \in \Z$ is an integer
$\equiv$ means that the respective coefficients are congruent modulo $m$

provided such a polynomial exists.


Divisor

Let $\map f x \div_m \map g x$ denote the operation of polynomial division modulo $m$:

$\map f x \div_m \map g x$ equals the integral polynomial $\map h x$ such that:
$\map g x \times_m \map h x \equiv \map f x \pmod m$

The polynomials $\map g x$ and $\map h x$ are (polynomial) divisors of $\map f x$ modulo $m$.


Examples

Arbitrary Example $1$

Let:

\(\ds \map f x\) \(=\) \(\ds x^3 - x^2 - 1\)
\(\ds \map g x\) \(=\) \(\ds x + 1\)


Then $\map f x$ divided by $\map g x$ modulo $3$ is:

$x^2 + x - 1$


Arbitrary Example $2$

Let:

\(\ds \map f x\) \(=\) \(\ds x^3 - x^2 - 1\)
\(\ds \map g x\) \(=\) \(\ds x + 1\)


Then $\map f x$ not divisible by $\map g x$ modulo $11$.


Arbitrary Example $3$

Let:

\(\ds \map f x\) \(=\) \(\ds x^3 - x^2 - 1\)
\(\ds \map g x\) \(=\) \(\ds x - 5\)


Then $\map f x$ divided by $\map g x$ modulo $11$ is:

$x^2 + 4 x - 2$


Also see

  • Results about polynomial division modulo $m$ can be found here.


Sources