Definite Integral from 0 to 1 of Logarithm of x by Logarithm of One minus x over One minus x/Proof 1

From ProofWiki
Jump to navigation Jump to search

Theorem

$\ds \int_0^1 \dfrac {\ln x \map \ln {1 - x} } {\paren {1 - x} } \rd x = \map \zeta 3$

where $\map \zeta 3$ is Apéry's constant: the Riemann $\zeta$ function of $3$.


Proof

\(\ds \int_0^1 \dfrac {\ln x \map \ln {1 - x} } {\paren {1 - x} } \rd x\) \(=\) \(\ds \int_1^0 \dfrac {\map \ln {1 - u} \ln u } u \paren {-\rd u}\) $x \to \paren {1 - u}$ and $\rd x \to -\rd u$
\(\ds \) \(=\) \(\ds \int_0^1 \dfrac {\map \ln {1 - u} \ln u } u \rd u\) reversing limits of integration
\(\ds \) \(=\) \(\ds -\int_0^1 \frac {\ln u} u \paren {\sum_{n \mathop = 1}^\infty \frac {u^n} n}\) Power Series Expansion for $\map \ln {1 + x}$: Corollary
\(\ds \) \(=\) \(\ds -\int_0^1 \ln u \paren {\sum_{n \mathop = 1}^\infty \frac {u^{n - 1} } n}\)
\(\ds \) \(=\) \(\ds -\sum_{n \mathop = 1}^\infty \frac 1 n \paren {\int_0^1 u^{n - 1} \ln u \rd u}\) Fubini's Theorem
\(\ds \) \(=\) \(\ds \paren {-1}^2 \sum_{n \mathop = 1}^\infty \frac 1 n \paren {\frac {\map \Gamma 2} {\paren {\paren {n - 1} + 1}^2} }\) Definite Integral from $0$ to $1$ of $x^m \paren {\ln x}^n$
\(\ds \) \(=\) \(\ds 1! \sum_{n \mathop = 1}^\infty \frac 1 {n^3}\) Gamma Function Extends Factorial
\(\ds \) \(=\) \(\ds \map \zeta {3}\) Definition of Apéry's Constant

$\blacksquare$