Definition:Isometry (Metric Spaces)/Definition 2

From ProofWiki
Jump to navigation Jump to search


Let $M_1 = \struct {A_1, d_1}$ and $M_2 = \struct {A_2, d_2}$ be metric spaces or pseudometric spaces.

$M_1$ and $M_2$ are isometric if and only if there exist inverse mappings $\phi: A_1 \to A_2$ and $\phi^{-1}: A_2 \to A_1$ such that:
$\forall a, b \in A_1: \map {d_1} {a, b} = \map {d_2} {\map \phi a, \map \phi b}$
$\forall u, v \in A_2: \map {d_2} {u, v} = \map {d_1} {\map {\phi^{-1} } u, \map {\phi^{-1} } v}$

Also known as

An isometry is also known as a metric equivalence.

Two isometric spaces can also be referred to as metrically equivalent.

Also see

  • Results about isometries can be found here.