Definition:Summation/Historical Note
Jump to navigation
Jump to search
Historical Note on Summation
The notation $\sum$ for a summation was famously introduced by Joseph Fourier in $1820$:
- Le signe $\ds \sum_{i \mathop = 1}^{i \mathop = \infty}$ indique que l'on doit donner au nombre entier $i$ toutes les valeurs $1, 2, 3, \ldots$, et prendre la somme des termes.
- (The sign $\ds \sum_{i \mathop = 1}^{i \mathop = \infty}$ indicates that one must give to the whole number $i$ all the values $1, 2, 3, \ldots$, and take the sum of the terms.)
- -- 1820: Refroidissement séculaire du globe terrestre (Bulletin des Sciences par la Société Philomathique de Paris Vol. 3, 7: pp. 58 – 70)
However, some sources suggest that it was in fact first introduced by Euler.
Sources
- 1972: George F. Simmons: Differential Equations ... (previous) ... (next): $\S 3$: Appendix $\text A$: Euler
- 1992: George F. Simmons: Calculus Gems ... (previous) ... (next): Chapter $\text {A}.21$: Euler ($\text {1707}$ – $\text {1783}$)
- 1997: Donald E. Knuth: The Art of Computer Programming: Volume 1: Fundamental Algorithms (3rd ed.) ... (previous) ... (next): $\S 1.2.3$: Sums and Products