Dipper Relation is Congruence for Addition

From ProofWiki
Jump to navigation Jump to search

Theorem

Let $m \in \N$ be a natural number.

Let $n \in \N_{>0}$ be a non-zero natural number.


Let $\RR_{m, n}$ be the dipper relation on $\N$:

$\forall x, y \in \N: x \mathrel {\RR_{m, n} } y \iff \begin {cases} x = y \\ m \le x < y \text { and } n \divides \paren {y - x} \\ m \le y < x \text { and } n \divides \paren {x - y} \end {cases}$


Then $\RR_{m, n}$ is a congruence relation for addition.


Proof

From Dipper Relation is Equivalence Relation we have that $\RR_{m, n}$ is an equivalence relation.

From Equivalence Relation is Congruence iff Compatible with Operation, it is sufficient to show that:

$\forall x, y, z \in \N: x \mathrel {\RR_{m, n} } y \implies \paren {x + z} \mathrel {\RR_{m, n} } \paren {y + z}$

and:

$\forall x, y, z \in \N: x \mathrel {\RR_{m, n} } y \implies \paren {z + x} \mathrel {\RR_{m, n} } \paren {z + y}$

Furthermore, because Natural Number Addition is Commutative, it is sufficient to demonstrate the first of these only.


So, let $x, y \in \N$ be such that:

$x \mathrel {\RR_{m, n} } y$


First let $x = y$.

We have that:

$x = y \implies x + z = y + z$

and so:

$\paren {x + z} \mathrel {\RR_{m, n} } \paren {y + z}$


Otherwise, we have that:

$x \ne y$ and $x, y \ge m$

Without loss of generality, let $x < y$.

If not, then as $\RR_{m, n}$ is symmetric we can rename $x$ and $y$ as necessary.


\(\ds x\) \(\RR_{m, n}\) \(\ds y\)
\(\ds \leadsto \ \ \) \(\ds n\) \(\divides\) \(\ds \paren {y - x}\) Definition of $\RR_{m, n}$
\(\ds \leadsto \ \ \) \(\ds \exists k \in \N_{>0}: \, \) \(\ds k n\) \(=\) \(\ds \paren {y - x}\) Definition of Divisor of Integer
\(\ds \leadsto \ \ \) \(\ds k n\) \(=\) \(\ds \paren {y + z - x - z}\) as $\paren {y + z - x - z} = y - x$
\(\ds \) \(=\) \(\ds \paren {\paren {y + z} - \paren {x + z} }\)
\(\ds \leadsto \ \ \) \(\ds n\) \(\divides\) \(\ds \paren {\paren {y + z} - \paren {x + z} }\) Definition of Divisor of Integer
\(\ds \paren {x + z}\) \(\RR_{m, n}\) \(\ds \paren {y + z}\) Definition of $\RR_{m, n}$, as both $x + z \ge m$ and $y + z \ge m$

$\blacksquare$


Sources