Dot Product of Antiparallel Vectors is Negative

From ProofWiki
Jump to navigation Jump to search

Theorem

Let $\mathbf u$ and $\mathbf v$ be non-zero antiparallel vectors.

Then:

$\mathbf u \cdot \mathbf v < 0$

where $\cdot$ denotes dot product.


Proof

We have by hypothesis that $\mathbf u$ and $\mathbf v$ are antiparallel.

Hence we can define $\mathbf u$ and $\mathbf v$ as:

\(\ds \mathbf u\) \(=\) \(\ds x \mathbf i + y \mathbf j + z \mathbf k\)
\(\ds \mathbf v\) \(=\) \(\ds \paren {-x} \mathbf i + \paren {-y} \mathbf j + \paren {-z} \mathbf k\)

where $x$, $y$ and $z$ are arbitrary real numbers such that at least one of $x$, $y$ and $z$ is not zero.


By definition of dot product:

\(\ds \mathbf u \cdot \mathbf v\) \(=\) \(\ds x \paren {-x} + y \paren {-y} + z \paren {-z}\) Definition of Dot Product
\(\ds \) \(=\) \(\ds -\paren {x^2 + y^2 + z^2}\)
\(\ds \) \(<\) \(\ds 0\) as $x^2 + y^2 + z^2 > 0$

$\blacksquare$


Sources