Equivalence of Definitions of Unique Existential Quantifier/Definition 2 iff Definition 3

From ProofWiki
Jump to navigation Jump to search

Theorem

The following definitions of the concept of Unique Existential Quantifier are equivalent:

Definition 2

There exists a unique object $x$ such that $\map P x$, denoted $\exists ! x: \map P x$, if and only if:

$\exists x : \forall y : \paren {\map P y \iff x = y}$

Definition 3

There exists a unique object $x$ such that $\map P x$, denoted $\exists ! x: \map P x$, if and only if both:

$\exists x : \map P x$

and:

$\forall y : \forall z : \paren {\paren {\map P y \land \map P z} \implies y = z }$


Proof

Suppose Definition 2, that for some $x$:

$(1): \quad \forall y : \paren {\map P y \iff x = y}$

Taking $y = x$ yields:

$x = x \implies \map P x$

implying that $\exists x : \map P x$.

Suppose $\map P y$ and $\map P z$ for arbitrary $y$ and $z$.

Then from $(1)$, $y = x$ and $z = x$, giving:

$\forall y : \forall z : \paren {\paren {\map P y \land \map P z} \implies y = z}$


Suppose Definition 3, that:

$(1): \quad \exists x : \map P x$

and for arbitrary $y$ and $z$:

$(2): \quad \paren { \map P y \land \map P z } \implies y = z$

From $(2)$, take $z = x$:

$\paren {\map P y \land \map P x} \implies y = x$

Thus, by $(1)$:

$\map P y \implies x = y$

Suppose $x = y$.

From $(1)$, $\map P x$, yielding:

$x = y \implies \map P y$

Thus:

$\exists x : \forall y : \paren {\map P y \iff x = y}$

$\blacksquare$