Image of Element under Composite Relation with Common Codomain and Domain

From ProofWiki
Jump to navigation Jump to search



Theorem

Let $\RR_1 \subseteq S \times T$ and $\RR_2 \subseteq T \times U$ be relations.

Let $\RR_2 \circ \RR_1 \subseteq S \times U$ be the composition of $\RR_1$ and $\RR_2$.

Let $x \in S$.


Then:

$\RR_2 \sqbrk {\map {\RR_1} x} = \map {\paren{\RR_2 \circ \RR_1}} x$


Proof

We have:

\(\ds \RR_2 \sqbrk {\map {\RR_1} x}\) \(=\) \(\ds \RR_2 \sqbrk {\RR_1 \sqbrk {\set x} }\) Image of Singleton under Relation
\(\ds \) \(=\) \(\ds \paren{\RR_2 \circ \RR_1} \sqbrk {\set x}\) Image of Subset under Composite Relation with Common Codomain and Domain
\(\ds \) \(=\) \(\ds \map {\paren{\RR_2 \circ \RR_1} } x\) Image of Singleton under Relation

$\blacksquare$

Also see