Image of Subset under Composite Relation

From ProofWiki
Jump to navigation Jump to search



Theorem

Let $\RR_1 \subseteq S_1 \times T_1$ and $\RR_2 \subseteq S_2 \times T_2$ be relations.

Let $\RR_2 \circ \RR_1 \subseteq S_1 \times T_2$ be the composition of $\RR_1$ and $\RR_2$.

Let $A \subseteq S_1$.


Then:

$\RR_2 \sqbrk {\RR_1 \sqbrk A \cap S_2} = \paren{\RR_2 \circ \RR_1} \sqbrk A$


Proof

We have:

\(\ds \forall z \in T_2: \, \) \(\ds z \in \RR_2 \sqbrk {\RR_1 \sqbrk A \cap S_2}\) \(\leadstoandfrom\) \(\ds \exists y \in \RR_1 \sqbrk A \cap S_2 : \tuple{y, z} \in R_2\) Definition of Image of Subset under Relation
\(\ds \) \(\leadstoandfrom\) \(\ds \exists y \in T_1 \cap S_2 : \exists x \in A : \tuple{x,y} \in R_1 : \tuple{y, z} \in R_2\) Definition of Image of Subset under Relation
\(\ds \) \(\leadstoandfrom\) \(\ds \exists x \in A : \exists y \in T_1 \cap S_2 : \tuple{x,y} \in R_1 : \tuple{y, z} \in R_2\)
\(\ds \) \(\leadstoandfrom\) \(\ds \exists x \in A : \tuple{x,z} \in R_2 \circ R_1\) Definition of Composite Relation
\(\ds \) \(\leadstoandfrom\) \(\ds z \in \paren{R_2 \circ R_1} \sqbrk A\) Definition of Image of Subset under Relation

$\blacksquare$

Also see