Linear Second Order ODE/y'' - 5 y' + 6 y = cos x + sin x

From ProofWiki
Jump to navigation Jump to search

Theorem

The second order ODE:

$(1): \quad y - 5 y' + 6 y = \cos x + \sin x$

has the general solution:

$y = C_1 e^{2 x} + C_2 e^{3 x} + \dfrac {\cos x} 5$


Proof

It can be seen that $(1)$ is a nonhomogeneous linear second order ODE in the form:

$y + p y' + q y = \map R x$

where:

$p = -5$
$q = 5$
$\map R x = \cos x + \sin x$


First we establish the solution of the corresponding constant coefficient homogeneous linear second order ODE:

$y - 5 y' + 6 y = 0$

From Linear Second Order ODE: $y - 5 y' + 6 y = 0$, this has the general solution:

$y_g = C_1 e^{2 x} + C_2 e^{3 x}$


It remains to find a particular solution $y_p$ to $(1)$.


We have that:

$\map R x = e^{-x} \cos x$

From the Method of Undetermined Coefficients for Sine and Cosine:

$y_p = A \cos x + B \sin x$

where $A$ and $B$ are to be determined.


Hence:

\(\ds y_p\) \(=\) \(\ds A \cos x + B \sin x\)
\(\ds \leadsto \ \ \) \(\ds {y_p}'\) \(=\) \(\ds -A \sin x + B \cos x\) Derivative of Sine Function, Derivative of Cosine Function
\(\ds \leadsto \ \ \) \(\ds {y_p}\) \(=\) \(\ds -A \cos x - B \sin x\) Derivative of Sine Function, Derivative of Cosine Function


Substituting into $(1)$:

\(\ds \paren {-A \cos x - B \sin x} - 5 \paren {-A \sin x + B \cos x} + 6 \paren {A \cos x + B \sin x}\) \(=\) \(\ds \cos x + \sin x\)
\(\ds \leadsto \ \ \) \(\ds \paren {5 A - 5 B} \cos x\) \(=\) \(\ds \cos x\) equating coefficients
\(\ds \paren {5 B + 5 A} \sin x\) \(=\) \(\ds \sin x\)
\(\ds \leadsto \ \ \) \(\ds 10 A\) \(=\) \(\ds 2\)
\(\ds 10 B\) \(=\) \(\ds 0\)
\(\ds \leadsto \ \ \) \(\ds A\) \(=\) \(\ds \dfrac 1 5\)
\(\ds B\) \(=\) \(\ds 0\)


Hence the result:

$y_p = \dfrac {\cos x} 5$

So from General Solution of Linear 2nd Order ODE from Homogeneous 2nd Order ODE and Particular Solution:

$y = y_g + y_p = C_1 e^{2 x} + C_2 e^{3 x} + \dfrac {\cos x} 5$

is the general solution to $(1)$.

$\blacksquare$


Sources