Properties of Well Inside Relation

From ProofWiki
Jump to navigation Jump to search



Theorem

Let $L = \struct{S, \vee, \wedge, \preceq}$ be a distributive lattice with greatest element $\top$ and smallest element $\bot$.

Let $\eqslantless$ denote the well inside relation on $L$.


Then the following hold:

Element Well Inside Itself Iff Has Complement

$\forall a \in S : a \eqslantless a \iff a$ has a complement


Well Inside Implies Predecessor

$\forall a,b \in S : a \eqslantless b \implies a \preceq b$


Well Inside Relation Extends to Predecessor and Successor

$\forall a,b,c,d \in S : a \preceq b \eqslantless c \preceq d \implies a \eqslantless d$


Well Inside Elements Form Filter

$\forall a \in S : \set{b \in S: a \eqslantless b}$ is a lattice filter


Elements Well Inside Form Ideal

$\forall a \in S : \set{b \in S: b \eqslantless a}$ is a a lattice ideal


Sources