Reciprocal times Derivative of Gamma Function/Proof 2

From ProofWiki
Jump to navigation Jump to search

Theorem

Let $z \in \C \setminus \Z_{\le 0}$.

Then:

$\ds \dfrac {\map {\Gamma'} z} {\map \Gamma z} = -\gamma + \sum_{n \mathop = 1}^\infty \paren {\frac 1 n - \frac 1 {z + n - 1} }$

where:

$\map \Gamma z$ denotes the Gamma function
$\map {\Gamma'} z$ denotes the derivative of the Gamma function
$\gamma$ denotes the Euler-Mascheroni constant.


Proof

\(\ds \frac 1 {\map \Gamma z}\) \(=\) \(\ds z e^{\gamma z} \prod_{n \mathop = 1}^\infty \paren {\paren {1 + \frac z n} e^{-z / n} }\) Weierstrass Form of Gamma Function
\(\ds \leadsto \ \ \) \(\ds \map \Gamma z\) \(=\) \(\ds \frac {e^{-\gamma z} } z \prod_{n \mathop = 1}^\infty \frac {e^{z/n} } {1 + \frac z n}\) reciprocal of both sides
\(\ds \leadsto \ \ \) \(\ds \map \ln {\map {\Gamma} z}\) \(=\) \(\ds \map \ln {\frac {e^{-\gamma z} } z \prod_{n \mathop = 1}^\infty \frac {e^{z/n} } {1 + \frac z n} }\) logarithm of both sides
\(\ds \) \(=\) \(\ds \map \ln {e^{-\gamma z} } - \ln z + \sum_{n \mathop = 1}^\infty \paren { \map \ln {e^{z/n} } - \map \ln {1 + \frac z n} }\) Sum of Logarithms and Difference of Logarithms
\(\ds \) \(=\) \(\ds -\gamma z \ln e - \ln z + \sum_{n \mathop = 1}^\infty \paren {\frac z n \ln e - \map \ln {1 + \frac z n} }\) Logarithm of Power
\(\ds \) \(=\) \(\ds -\gamma z - \ln z + \sum_{n \mathop = 1}^\infty \paren {\frac z n - \map \ln {1 + \frac z n} }\) Natural Logarithm of e is 1
\(\ds \leadsto \ \ \) \(\ds \map {\dfrac \d {\d z} } {\map \ln {\map {\Gamma} z} }\) \(=\) \(\ds \map {\dfrac \d {\d z} } {-\gamma z - \ln z + \sum_{n \mathop = 1}^\infty \paren {\frac z n - \map \ln {1 + \frac z n} } }\) differentiating with respect to $z$
\(\ds \leadsto \ \ \) \(\ds \frac {\map {\Gamma'} z} {\map \Gamma z}\) \(=\) \(\ds -\gamma - \frac 1 z + \sum_{n \mathop = 1}^\infty \paren {\frac 1 n - \frac {\frac 1 n} {1 + \frac z n} }\) Derivative of Composite Function and Derivative of Natural Logarithm Function
\(\ds \) \(=\) \(\ds -\gamma - \frac 1 z + \sum_{n \mathop = 1}^\infty \paren {\frac 1 n - \frac 1 {z + n} }\)
\(\ds \) \(=\) \(\ds -\gamma - \frac 1 z + \paren {\paren {\frac 1 1 - \frac 1 {z + 1} } + \paren {\frac 1 2 - \frac 1 {z + 2} } + \paren {\frac 1 3 - \frac 1 {z + 3} } + \cdots}\)
\(\ds \) \(=\) \(\ds -\gamma + \paren {\paren {\frac 1 1 - \frac 1 z } + \paren {\frac 1 2 - \frac 1 {z + 1} } + \paren {\frac 1 3 - \frac 1 {z + 2} } + \cdots}\) shifting the terms with $z$ one to the right
\(\ds \) \(=\) \(\ds -\gamma + \sum_{n \mathop = 1}^\infty \paren {\frac 1 n - \frac 1 {z + n - 1} }\)

$\blacksquare$