Second Order ODE/y'' = f(x)

From ProofWiki
Jump to navigation Jump to search

Theorem

The second order ODE:

$\dfrac {\d^2 y} {\d x^2} = \map f x$

has the general solution:

$\ds y = \iint \map f x \rd x \rd x + C_1 x + C_2$

where $C_1$ and $C_2$ are arbitrary constants.


Proof

\(\ds \dfrac {\d^2 y} {\d x^2}\) \(=\) \(\ds \map f x\)
\(\ds \leadsto \ \ \) \(\ds \int \dfrac {\d^2 y} {\d x^2} \rd y\) \(=\) \(\ds \int \map f x \rd x\) Solution to Separable Differential Equation
\(\ds \leadsto \ \ \) \(\ds \dfrac {\d y} {\d x}\) \(=\) \(\ds \int \map f x \rd x + C_1\) where $C_1$ is an arbitrary constant
\(\ds \leadsto \ \ \) \(\ds \int \dfrac {\d y} {\d x} \rd y\) \(=\) \(\ds \int \paren {\int \map f x \rd x + C_1} \rd x\) Solution to Separable Differential Equation
\(\ds \) \(=\) \(\ds \int \paren {\int \map f x \rd x} \rd x + \int C_1 \rd x\) Linear Combination of Primitives
\(\ds \leadsto \ \ \) \(\ds y\) \(=\) \(\ds \iint \map f x \rd x \rd x + C_1 x + C_2\) Primitive of Power: $C_2$ is another arbitrary constant

$\blacksquare$


Sources