Second Order ODE/y'' = f(y)

From ProofWiki
Jump to navigation Jump to search

Theorem

The second order ODE:

$\dfrac {\d^2 y} {\d x^2} = \map f y$

has the general solution:

$\dfrac {\sqrt 2} 2 \ds \int \dfrac {\d y} {\sqrt {\ds \int \map f y \rd y + C_1} } = x + C_2$

where $C_1$ and $C_2$ are arbitrary constants.


Proof

\(\ds \dfrac {\d^2 y} {\d x^2}\) \(=\) \(\ds \map f y\)
\(\ds \leadsto \ \ \) \(\ds 2 \dfrac {\d y} {\d x} \dfrac {\d^2 y} {\d x^2}\) \(=\) \(\ds 2 \map f y \dfrac {\d y} {\d x}\)
\(\ds \leadsto \ \ \) \(\ds \int 2 \dfrac {\d y} {\d x} \dfrac {\d^2 y} {\d x^2} \rd x\) \(=\) \(\ds \int 2 \map f y \dfrac {\d y} {\d x} \rd x\)
\(\ds \leadsto \ \ \) \(\ds \paren {\dfrac {\d y} {\d x} }^2\) \(=\) \(\ds 2 \int \map f y \rd y + C\)
\(\ds \leadsto \ \ \) \(\ds \dfrac {\d y} {\d x}\) \(=\) \(\ds \sqrt {2 \int \map f y \rd y + C_1}\)
\(\ds \leadsto \ \ \) \(\ds \int \dfrac {\d y} {\sqrt {2 \ds \int \map f y \rd y + C_1} }\) \(=\) \(\ds \int \rd x\) Solution to Separable Differential Equation
\(\ds \leadsto \ \ \) \(\ds \dfrac {\sqrt 2} 2 \int \dfrac {\d y} {\sqrt {\ds \int \map f y \rd y + C_1} }\) \(=\) \(\ds x + C_2\)

$\blacksquare$


Sources