# Symbols:A

Previous  ... Next

### atto-

$\mathrm a$

The Système Internationale d'Unités symbol for the metric scaling prefix atto, denoting $10^{\, -18 }$, is $\mathrm { a }$.

Its $\LaTeX$ code is \mathrm {a} .

### are

$\mathrm a$

One are is equal to a square whose side measures $10$ metres.

 $\ds$  $\ds 1$ are $\ds$ $=$ $\ds 100$ square metres $\ds$ $=$ $\ds 0 \cdotp 01$ hectares $\ds$ $\approx$ $\ds 119 \cdot 60$ square yards

The symbol for the are is $\mathrm a$.

The $\LaTeX$ code for $\mathrm a$ is \mathrm a .

$\mathrm A$ or $\mathrm a$

The hexadecimal digit $10$.

Its $\LaTeX$ code is \mathrm A  or \mathrm a.

### Acceleration

$\mathbf a$

The acceleration $\mathbf a$ of a body $M$ is defined as the first derivative of the velocity $\mathbf v$ of $M$ relative to a given point of reference with respect to time $t$:

$\mathbf a = \dfrac {\d \mathbf v} {\d t}$

The usual symbol used to denote the acceleration of a body is $\mathbf a$.

The $\LaTeX$ code for $\mathbf a$ is \mathbf a .

### Celestial Altitude

$a$

Let $X$ be a point on the celestial sphere.

The (celestial) altitude of $X$ is defined as the angle subtended by the the arc of the vertical circle through $X$ between the celestial horizon and $X$ itself.

The $\LaTeX$ code for $a$ is a .

### Azimuth (Astronomy)

$A$

Let $X$ be a point on the celestial sphere.

The spherical angle between the principal vertical circle and the vertical circle on which $X$ lies is the azimuth of $X$.

The azimuth is usually measured in degrees, $0 \degrees$ to $180 \degrees$ either west or east, depending on whether $X$ lies on the eastern or western hemisphere of the celestial sphere.

The symbol for azimuth (in the context of astronomy) is $A$.

The $\LaTeX$ code for $A$ is A .

### Ampere

$\mathrm A$

The ampere is the SI base unit of electric current.

It is defined as being:

The constant current which will produce a force of attraction whose value is $2 \times 10^{–7}$ newtons per metre of length between two straight, parallel conductors of infinite length and of infinitesimal circular cross-section placed one metre apart in a vacuum.

The symbol for the ampere is $\mathrm A$.

Its $\LaTeX$ code is \mathrm A .

### Angstrom

$\mathring {\mathrm A}$

The angstrom is a metric unit of length.

 $\ds$  $\ds 1$ angstrom $\ds$ $=$ $\ds 10^{-1}$ nanometres $\ds$ $=$ $\ds 10^{-4}$ micrometres $\ds$ $=$ $\ds 10^{-7}$ millimetres $\ds$ $=$ $\ds 10^{-8}$ centimetres $\ds$ $=$ $\ds 10^{-10}$ metres

The symbol for the angstrom is $\mathring {\mathrm A}$.

The $\LaTeX$ code for $\mathring {\mathrm A}$ is \mathring {\mathrm A} .

### Alternating Group

$A_n$

Let $S_n$ denote the symmetric group on $n$ letters.

For any $\pi \in S_n$, let $\map \sgn \pi$ be the sign of $\pi$.

The kernel of the mapping $\sgn: S_n \to C_2$ is called the alternating group on $n$ letters and denoted $A_n$.

The $\LaTeX$ code for $A_n$ is A_n .

### Airy Function of the First Kind

$\map \Ai x$

An Airy function of the first kind is an Airy function which is of the form:

$\ds \map {\Ai} x = \dfrac 1 \pi \int_0^\infty \map \cos {\dfrac {t^3} 3 + x t} \rd t$

The $\LaTeX$ code for $\map \Ai x$ is \map \Ai x .

### Automorphism Group

$\Aut S$

Let $\struct {S, *}$ be an algebraic structure.

Let $\mathbb S$ be the set of automorphisms of $S$.

Then the algebraic structure $\struct {\mathbb S, \circ}$, where $\circ$ denotes composition of mappings, is called the automorphism group of $S$.

The structure $\struct {S, *}$ is usually a group. However, this is not necessary for this definition to be valid.

The automorphism group of an algebraic structure $S$ is denoted on $\mathsf{Pr} \infty \mathsf{fWiki}$ as $\Aut S$.

The $\LaTeX$ code for $\Aut S$ is \Aut S .

### Arccosine

Real Arccosine Function

From Shape of Cosine Function, we have that $\cos x$ is continuous and strictly decreasing on the interval $\closedint 0 \pi$.

From Cosine of Multiple of Pi, $\cos \pi = -1$ and $\cos 0 = 1$.

Therefore, let $g: \closedint 0 \pi \to \closedint {-1} 1$ be the restriction of $\cos x$ to $\closedint 0 \pi$.

Thus from Inverse of Strictly Monotone Function, $\map g x$ admits an inverse function, which will be continuous and strictly decreasing on $\closedint {-1} 1$.

This function is called the arccosine of $x$.

Thus:

The domain of arccosine is $\closedint {-1} 1$
The image of arccosine is $\closedint 0 \pi$.

#### arccos

$\arccos$

The usual symbol used on $\mathsf{Pr} \infty \mathsf{fWiki}$ to denote the arccosine function is $\arccos$.

The $\LaTeX$ code for $\arccos$ is \arccos .

#### acos

$\operatorname {acos}$

A variant symbol used to denote the arccosine function is $\operatorname {acos}$.

The $\LaTeX$ code for $\operatorname {acos}$ is \operatorname {acos} .

### Arccosecant

Arccosecant Function

From Shape of Cosecant Function, we have that $\csc x$ is continuous and strictly decreasing on the intervals $\hointr {-\dfrac \pi 2} 0$ and $\hointl 0 {\dfrac \pi 2}$.

From the same source, we also have that:

$\csc x \to + \infty$ as $x \to 0^+$
$\csc x \to - \infty$ as $x \to 0^-$

Let $g: \hointr {-\dfrac \pi 2} 0 \to \hointl {-\infty} {-1}$ be the restriction of $\csc x$ to $\hointr {-\dfrac \pi 2} 0$.

Let $h: \hointl 0 {\dfrac \pi 2} \to \hointr 1 \infty$ be the restriction of $\csc x$ to $\hointl 0 {\dfrac \pi 2}$.

Let $f: \closedint {-\dfrac \pi 2} {\dfrac \pi 2} \setminus \set 0 \to \R \setminus \openint {-1} 1$:

$\map f x = \begin{cases} \map g x & : -\dfrac \pi 2 \le x < 0 \\ \map h x & : 0 < x \le \dfrac \pi 2 \end{cases}$

From Inverse of Strictly Monotone Function, $\map g x$ admits an inverse function, which will be continuous and strictly decreasing on $\hointl {-\infty} {-1}$.

From Inverse of Strictly Monotone Function, $\map h x$ admits an inverse function, which will be continuous and strictly decreasing on $\hointr 1 \infty$.

As both the domain and range of $g$ and $h$ are disjoint, it follows that:

$\inv f x = \begin {cases} \inv g x & : x \le -1 \\ \inv h x & : x \ge 1 \end {cases}$

This function $\map {f^{-1} } x$ is called the arccosecant of $x$.

Thus:

The domain of the arccosecant is $\R \setminus \openint {-1} 1$
The image of the arccosecant is $\closedint {-\dfrac \pi 2} {\dfrac \pi 2} \setminus \set 0$.

#### arccsc

$\arccsc$

The usual symbol used on $\mathsf{Pr} \infty \mathsf{fWiki}$ to denote the arccosecant function is $\arccsc$.

The $\LaTeX$ code for $\arccsc$ is \arccsc .

#### arccosec

$\operatorname {arccosec}$

A variant symbol used to denote the arccosecant function is $\operatorname {arccosec}$.

The $\LaTeX$ code for $\operatorname {arccosec}$ is \operatorname {arccosec} .

#### acosec

$\operatorname {acosec}$

A variant symbol used to denote the arccosecant function is $\operatorname {acosec}$.

The $\LaTeX$ code for $\operatorname {acosec}$ is \operatorname {acosec} .

#### acsc

$\operatorname {acsc}$

A variant symbol used to denote the arccosecant function is $\operatorname {acsc}$.

The $\LaTeX$ code for $\operatorname {acsc}$ is \operatorname {acsc} .

### Arccotangent

Arccotangent Function

From Shape of Cotangent Function, we have that $\cot x$ is continuous and strictly decreasing on the interval $\openint 0 \pi$.

From the same source, we also have that:

$\cot x \to + \infty$ as $x \to 0^+$
$\cot x \to - \infty$ as $x \to \pi^-$

Let $g: \openint 0 \pi \to \R$ be the restriction of $\cot x$ to $\openint 0 \pi$.

Thus from Inverse of Strictly Monotone Function, $\map g x$ admits an inverse function, which will be continuous and strictly decreasing on $\R$.

This function is called the arccotangent of $x$ and is written $\arccot x$.

Thus:

The domain of the arccotangent is $\R$
The image of the arccotangent is $\openint 0 \pi$.

#### arccot

$\arccot$

The usual symbol used on $\mathsf{Pr} \infty \mathsf{fWiki}$ to denote the arccotangent function is $\arccot$.

The $\LaTeX$ code for $\arccot$ is \arccot .

#### acot

$\operatorname {acot}$

A variant symbol used to denote the arccotangent function is $\operatorname {acot}$.

Its $\LaTeX$ code is \operatorname {acot} .

#### actn

$\operatorname {actn}$

A variant symbol used to denote the arccotangent function is $\operatorname {actn}$.

Its $\LaTeX$ code is \operatorname {actn} .

### Area Hyperbolic Cosine

The principal branch of the real inverse hyperbolic cosine function is defined as:

$\forall x \in S: \map \arcosh x := \map \ln {x + \sqrt {x^2 - 1} }$

where:

$\ln$ denotes the natural logarithm of a (strictly positive) real number.
$\sqrt {x^2 - 1}$ specifically denotes the positive square root of $x^2 - 1$

That is, where $\map \arcosh x \ge 0$.

#### arcosh

$\arcosh$

The usual symbol used on $\mathsf{Pr} \infty \mathsf{fWiki}$ to denote the area hyperbolic cosine function is $\arcosh$.

The $\LaTeX$ code for $\arcosh$ is \arcosh .

#### acosh

$\operatorname {acosh}$

A variant symbol used to denote the area hyperbolic cosine function is $\operatorname {acosh}$.

Its $\LaTeX$ code is \operatorname {acosh} .

### Area Hyperbolic Cosecant

The inverse hyperbolic cosecant $\arcsch: \R_{\ne 0} \to \R$ is a real function defined on the non-zero real numbers $\R_{\ne 0}$ as:

$\forall x \in \R_{\ne 0}: \map \arcsch x := \map \ln {\dfrac 1 x + \dfrac {\sqrt {x^2 + 1} } {\size x} }$

where:

$\sqrt {x^2 + 1}$ denotes the positive square root of $x^2 + 1$
$\ln$ denotes the natural logarithm of a (strictly positive) real number.

#### arcsch

$\arcsch$

The usual symbol used on $\mathsf{Pr} \infty \mathsf{fWiki}$ to denote the area hyperbolic cosecant function is $\arcsch$.

The $\LaTeX$ code for $\arcsch$ is \arcsch .

#### acsch

$\operatorname {acsch}$

A variant symbol used to denote the area hyperbolic cosecant function is $\operatorname {acsch}$.

The $\LaTeX$ code for $\operatorname {acsch}$ is \operatorname {acsch} .

#### acosech

$\operatorname {acosech}$

A variant symbol used to denote the area hyperbolic cosecant function is $\operatorname {acosech}$.

The $\LaTeX$ code for $\operatorname {acosech}$ is \operatorname {acosech} .

### Area Hyperbolic Cotangent

The inverse hyperbolic cotangent $\arcoth: S \to \R$ is a real function defined on $S$ as:

$\forall x \in S: \arcoth x := \dfrac 1 2 \map \ln {\dfrac {x + 1} {x - 1} }$

where $\ln$ denotes the natural logarithm of a (strictly positive) real number.

#### arcoth

$\arcoth$

The usual symbol used on $\mathsf{Pr} \infty \mathsf{fWiki}$ to denote the area hyperbolic cotangent function is $\arcoth$.

The $\LaTeX$ code for $\arcoth$ is \arcoth .

#### acoth

$\operatorname {acoth}$

A variant symbol used to denote the area hyperbolic cotangent function is $\operatorname {acoth}$.

The $\LaTeX$ code for $\operatorname {acoth}$ is \operatorname {acoth} .

#### actnh

$\operatorname {actnh}$

A variant symbol used to denote the area hyperbolic cotangent function is $\operatorname {actnh}$.

The $\LaTeX$ code for $\operatorname {actnh}$ is \operatorname {actnh} .

$\adj {\mathbf A}$

Let $\mathbf A = \sqbrk a_n$ be a square matrix of order $n$.

Let $\mathbf C$ be its cofactor matrix.

The adjugate matrix of $\mathbf A$ is the transpose of $\mathbf C$:

$\adj {\mathbf A} = \mathbf C^\intercal$

The $\LaTeX$ code for $\adj {\mathbf A}$ is \adj {\mathbf A} .

### aln

$\operatorname {aln}$

The antilogarithm of the natural logarithm.

Its $\LaTeX$ code is \operatorname {aln} .

### alog

$\operatorname {alog}_b$

Let $x \in \R_{>0}$ be a strictly positive real number.

Let $b \in \R_{>1}$ be a real number which is greater than $1$.

Let $y = \log_b x$ be the logarithm of $x$ base $b$.

Then $x$ is the antilogarithm of $y$ base $b$.

The $\LaTeX$ code for $\operatorname {alog}_b$ is \operatorname {alog}_b .

### Amplitude of Incomplete Elliptic Integral of the First Kind

The parameter $\phi$ of $u = \map F {k, \phi}$ is called the amplitude of $u$.

#### am

$\am$

The usual symbol used on $\mathsf{Pr} \infty \mathsf{fWiki}$ to denote the amplitude of the incomplete elliptic integral of the first kind is $\am$.

The $\LaTeX$ code for $\am$ is \am .

#### amp

$\operatorname {amp}$

A variant symbol used to denote the amplitude of the incomplete elliptic integral of the first kind is $\operatorname {amp}$.

The $\LaTeX$ code for $\operatorname {amp}$ is \operatorname {amp} .

### Ann

$\operatorname {Ann}$

Let $B: R \times \Z$ be a bilinear mapping defined as:

$B: R \times \Z: \tuple {r, n} \mapsto n \cdot r$

where $n \cdot r$ defined as an integral multiple of $r$:

$n \cdot r = r + r + \cdots \paren n \cdots r$

Note the change of order of $r$ and $n$:

$\map B {r, n} = n \cdot r$

Let $D \subseteq R$ be a subring of $R$.

Then the annihilator of $D$ is defined as:

$\map {\mathrm {Ann} } D = \set {n \in \Z: \forall d \in D: n \cdot d = 0_R}$

or, when $D = R$:

$\map {\mathrm {Ann} } R = \set {n \in \Z: \forall r \in R: n \cdot r = 0_R}$

Its $\LaTeX$ code is \operatorname {Ann} .

### arg

$\arg$

Its $\LaTeX$ code is \arg .

### Arg

$\operatorname {Arg}$

Its $\LaTeX$ code is \Arg .

### Arcsine

Arcsine Function

From Shape of Sine Function, we have that $\sin x$ is continuous and strictly increasing on the interval $\closedint {-\dfrac \pi 2} {\dfrac \pi 2}$.

$\map \sin {-\dfrac {\pi} 2} = -1$

and:

$\sin \dfrac {\pi} 2 = 1$

Therefore, let $g: \closedint {-\dfrac \pi 2} {\dfrac \pi 2} \to \closedint {-1} 1$ be the restriction of $\sin x$ to $\closedint {-\dfrac \pi 2} {\dfrac \pi 2}$.

Thus from Inverse of Strictly Monotone Function, $g \paren x$ admits an inverse function, which will be continuous and strictly increasing on $\closedint {-1} 1$.

This function is called the arcsine of $x$.

Thus:

The domain of arcsine is $\closedint {-1} 1$
The image of arcsine is $\closedint {-\dfrac \pi 2} {\dfrac \pi 2}$.

#### arcsin

$\arcsin$

The usual symbol used on $\mathsf{Pr} \infty \mathsf{fWiki}$ to denote the arcsine function is $\arcsin$.

The $\LaTeX$ code for $\arcsin$ is \arcsin .

#### asin

$\operatorname {asin}$

A variant symbol used to denote the arcsine function is $\operatorname {asin}$.

The $\LaTeX$ code for $\operatorname {asin}$ is \operatorname {asin} .

### Arcsecant

Arcsecant Function

From Shape of Secant Function, we have that $\sec x$ is continuous and strictly increasing on the intervals $\hointr 0 {\dfrac \pi 2}$ and $\hointl {\dfrac \pi 2} \pi$.

From the same source, we also have that:

$\sec x \to + \infty$ as $x \to \dfrac \pi 2^-$
$\sec x \to - \infty$ as $x \to \dfrac \pi 2^+$

Let $g: \hointr 0 {\dfrac \pi 2} \to \hointr 1 \to$ be the restriction of $\sec x$ to $\hointr 0 {\dfrac \pi 2}$.

Let $h: \hointl {\dfrac \pi 2} \pi \to \hointl \gets {-1}$ be the restriction of $\sec x$ to $\hointl {\dfrac \pi 2} \pi$.

Let $f: \closedint 0 \pi \setminus \dfrac \pi 2 \to \R \setminus \openint {-1} 1$:

$\map f x = \begin{cases} \map g x & : 0 \le x < \dfrac \pi 2 \\ \map h x & : \dfrac \pi 2 < x \le \pi \end{cases}$

From Inverse of Strictly Monotone Function, $\map g x$ admits an inverse function, which will be continuous and strictly increasing on $\hointr 1 \to$.

From Inverse of Strictly Monotone Function, $\map h x$ admits an inverse function, which will be continuous and strictly increasing on $\hointl \gets {-1}$.

As both the domain and range of $g$ and $h$ are disjoint, it follows that:

$\inv f x = \begin {cases} \inv g x & : x \ge 1 \\ \inv h x & : x \le -1 \end {cases}$

This function $\inv f x$ is called the arcsecant of $x$.

Thus:

The domain of the arcsecant is $\R \setminus \openint {-1} 1$
The image of the arcsecant is $\closedint 0 \pi \setminus \dfrac \pi 2$.

#### arcsec

$\arcsec$

The usual symbol used on $\mathsf{Pr} \infty \mathsf{fWiki}$ to denote the arcsecant function is $\arcsec$.

The $\LaTeX$ code for $\arcsec$ is \arcsec .

#### asec

$\operatorname {asec}$

A variant symbol used to denote the arcsecant function is $\operatorname {asec}$.

The $\LaTeX$ code for $\operatorname {asec}$ is \operatorname {asec} .

### Arctangent

Arctangent Function

From Shape of Tangent Function, we have that $\tan x$ is continuous and strictly increasing on the interval $\openint {-\dfrac \pi 2} {\dfrac \pi 2}$.

From the same source, we also have that:

$\tan x \to + \infty$ as $x \to \dfrac \pi 2 ^-$
$\tan x \to - \infty$ as $x \to -\dfrac \pi 2 ^+$

Let $g: \openint {-\dfrac \pi 2} {\dfrac \pi 2} \to \R$ be the restriction of $\tan x$ to $\openint {-\dfrac \pi 2} {\dfrac \pi 2}$.

Thus from Inverse of Strictly Monotone Function, $\map g x$ admits an inverse function, which will be continuous and strictly increasing on $\R$.

This function is called the arctangent of $x$ and is written $\arctan x$.

Thus:

The domain of the arctangent is $\R$
The image of the arctangent is $\openint {-\dfrac \pi 2} {\dfrac \pi 2}$.

#### arctan

$\arctan$

The usual symbol used on $\mathsf{Pr} \infty \mathsf{fWiki}$ to denote the arctangent function is $\arctan$.

The $\LaTeX$ code for $\arctan$ is \arctan .

#### atan

$\operatorname {atan}$

A variant symbol used to denote the arctangent function is $\operatorname {atan}$.

The $\LaTeX$ code for $\operatorname {atan}$ is \operatorname {atan} .

#### atn

$\operatorname {atn}$

A variant symbol used to denote the arctangent function is $\operatorname {atn}$.

The $\LaTeX$ code for $\operatorname {atn}$ is \operatorname {atn} .

### Area Hyperbolic Sine

The inverse hyperbolic sine $\arsinh: \R \to \R$ is a real function defined on $\R$ as:

$\forall x \in \R: \map \arsinh x := \map \ln {x + \sqrt {x^2 + 1} }$

where:

$\ln$ denotes the natural logarithm of a (strictly positive) real number
$\sqrt {x^2 + 1}$ denotes the positive square root of $x^2 + 1$.

#### arsinh

$\arsinh$

The usual symbol used on $\mathsf{Pr} \infty \mathsf{fWiki}$ to denote the area hyperbolic sine function is $\arsinh$.

The $\LaTeX$ code for $\arsinh$ is \arsinh .

#### asinh

$\operatorname {asinh}$

A variant symbol used to denote the area hyperbolic sine function is $\operatorname {asinh}$.

The $\LaTeX$ code for $\operatorname {asinh}$ is \operatorname {asinh} .

### Area Hyperbolic Secant

The principal branch of the real inverse hyperbolic secant function is defined as:

$\forall x \in S: \map \arsech x := \map \ln {\dfrac {1 + \sqrt {1 - x^2} } x}$

where:

$\ln$ denotes the natural logarithm of a (strictly positive) real number.
$\sqrt {1 - x^2}$ specifically denotes the positive square root of $x^2 - 1$

That is, where $\map \arsech x \ge 0$.

#### arsech

$\arsech$

The usual symbol used on $\mathsf{Pr} \infty \mathsf{fWiki}$ to denote the area hyperbolic secant function is $\arsech$.

The $\LaTeX$ code for $\arsech$ is \arsech .

#### asech

$\operatorname {asech}$

A variant symbol used to denote the area hyperbolic secant function is $\operatorname {asech}$.

The $\LaTeX$ code for $\operatorname {asech}$ is \operatorname {asech} .

### Area Hyperbolic Tangent

The inverse hyperbolic tangent $\artanh: S \to \R$ is a real function defined on $S$ as:

$\forall x \in S: \map \artanh x := \dfrac 1 2 \map \ln {\dfrac {1 + x} {1 - x} }$

where $\ln$ denotes the natural logarithm of a (strictly positive) real number.

#### artanh

$\artanh$

The usual symbol used on $\mathsf{Pr} \infty \mathsf{fWiki}$ to denote the area hyperbolic tangent function is $\artanh$.

The $\LaTeX$ code for $\artanh$ is \artanh .

#### atanh

$\operatorname {atanh}$

A variant symbol used to denote the area hyperbolic tangent function is $\operatorname {atanh}$.

The $\LaTeX$ code for $\operatorname {atanh}$ is \operatorname {atanh} .

### Standard Atmosphere

The standard atmosphere is a unit of pressure.

It is defined as being:

The amount of pressure equal to exactly $101 \, 325$ pascals.
 $\ds$  $\ds 1$ standard atmosphere $\ds$ $=$ $\ds 101 \, 325$ pascals $\ds$ $\approx$ $\ds 760$ millimetres of mercury $\ds$ $\approx$ $\ds 14.70$ pounds per square inch

#### atm

$\mathrm {atm}$

The usual symbol used on $\mathsf{Pr} \infty \mathsf{fWiki}$ to denote the standard atmosphere is $\mathrm {atm}$.

The $\LaTeX$ code for $\mathrm {atm}$ is \mathrm {atm} .

#### Int atm

$\mathrm {Int \, atm}$

A variant symbol used to denote the standard atmosphere is $\mathrm {Int \, atm}$.

This reflects its variant name of international atmosphere.

The $\LaTeX$ code for $\mathrm {Int \, atm}$ is \mathrm {Int \, atm} .

### Abampere

$\mathrm {abA}$

The symbol for the abampere is $\mathrm {abA}$.

Its $\LaTeX$ code is \mathrm {abA} .

### Abcoulomb

$\mathrm {abC}$

The symbol for the abcoulomb is $\mathrm {abC}$.

Its $\LaTeX$ code is \mathrm {abC} .

### Abvolt

$\mathrm {abV}$

The symbol for the abvolt is $\mathrm {abV}$.

Its $\LaTeX$ code is \mathrm {abV} .

### Abohm

$\mathrm {ab \Omega}$

The symbol for the abohm is $\mathrm {ab \Omega}$, where $\Omega$ is the Greek letter Omega.

Its $\LaTeX$ code is \mathrm {ab \Omega} .

### Abhenry

$\mathrm {abH}$

The symbol for the abhenry is $\mathrm {abH}$.

Its $\LaTeX$ code is \mathrm {abH} .

$\mathrm {abF}$

The symbol for the abfarad is $\mathrm {abF}$.

Its $\LaTeX$ code is \mathrm {abF} .

### Atomic Mass Unit

$\mathrm {amu}$ or $\mathrm {AMU}$

The symbol for the atomic mass unit is $\mathrm {amu}$ or $\mathrm {AMU}$.

The $\LaTeX$ code for $\mathrm {amu}$ is \mathrm {amu} .

The $\LaTeX$ code for $\mathrm {AMU}$ is \mathrm {AMU} .

$a_0$

The symbol for the Bohr radius is $a_0$.

The $\LaTeX$ code for $a_0$ is a_0 .

### Astronomical Unit

$\mathrm {AU}$ or $\mathrm {au}$

The symbol for the astronomical unit is $\mathrm {AU}$ or $\mathrm {au}$.

The $\LaTeX$ code for $\mathrm {AU}$ is \mathrm {AU} .

The $\LaTeX$ code for $\mathrm {au}$ is \mathrm {au} .

Previous  ... Next