Modulus of Gamma Function of One Half plus Imaginary Number

From ProofWiki
Jump to navigation Jump to search

Theorem

Let $t \in \R$ be a real number.


Then:

$\cmod {\map \Gamma {\dfrac 1 2 + i t} } = \sqrt {\pi \map \sech {\pi t} }$

where:

$\Gamma$ is the Gamma function
$\sech$ is the hyperbolic secant function.


Proof

\(\ds \cmod {\map \Gamma {\frac 1 2 + i t} }^2\) \(=\) \(\ds \map \Gamma {\frac 1 2 + i t} \overline {\map \Gamma {\frac 1 2 + i t} }\) Modulus in Terms of Conjugate
\(\ds \) \(=\) \(\ds \map \Gamma {\frac 1 2 + i t} \map \Gamma {\frac 1 2 - i t}\) Complex Conjugate of Gamma Function
\(\ds \) \(=\) \(\ds \map \Gamma {\frac 1 2 + i t} \map \Gamma {1 - \paren {\frac 1 2 + i t} }\) applying some algebra
\(\ds \) \(=\) \(\ds \pi \map \csc {\pi \paren {\frac 1 2 + i t} }\) Euler's Reflection Formula
\(\ds \) \(=\) \(\ds \pi \map \sec {\pi i t}\) Sine of Complement equals Cosine
\(\ds \) \(=\) \(\ds \pi \map \sech {\pi t}\) Hyperbolic Cosine in terms of Cosine


As $\cmod z \ge 0$ for all complex numbers $z$, we can take the non-negative square root of both sides and write:

$\cmod {\map \Gamma {\dfrac 1 2 + i t} } = \sqrt {\pi \map \sech {\pi t} }$

$\blacksquare$