Definition:Euler's Number/Limit of Sequence
Jump to navigation
Jump to search
Definition
The sequence $\sequence {x_n}$ defined as $x_n = \paren {1 + \dfrac 1 n}^n$ converges to a limit as $n$ increases without bound.
That limit is called Euler's Number and is denoted $e$.
Decimal Expansion
The decimal expansion of Euler's number $e$ starts:
- $2 \cdotp 71828 \, 18284 \, 59045 \, 23536 \, 02874 \, 71352 \, 66249 \, 77572 \, 47093 \, 69995 \ldots$
Also see
Source of Name
This entry was named for Leonhard Paul Euler.
Sources
- 1968: Murray R. Spiegel: Mathematical Handbook of Formulas and Tables ... (previous) ... (next): $\S 1$: Special Constants: $1.2$
- 1975: W.A. Sutherland: Introduction to Metric and Topological Spaces ... (previous) ... (next): $1$: Review of some real analysis: $\S 1.2$: Real Sequences
- 1986: David Wells: Curious and Interesting Numbers ... (previous) ... (next): $2 \cdotp 718 \, 281 \, 828 \, 459 \, 045 \, 235 \, 360 \, 287 \, 471 \, 352 \, 662 \, 497 \, 757 \, 247 \, 093 \, 699 \ldots$
- 1997: David Wells: Curious and Interesting Numbers (2nd ed.) ... (previous) ... (next): $2 \cdotp 71828 \, 18284 \, 59045 \, 23536 \, 02874 \, 71352 \, 66249 \, 77572 \, 47093 \, 69995 \ldots$
- 2008: Ian Stewart: Taming the Infinite ... (previous) ... (next): Chapter $5$: Eternal Triangles: The number $e$