Definition:Set/Explicit Set Definition
< Definition:Set(Redirected from Definition:Explicit Set Definition)
Jump to navigation
Jump to search
Definition
A (finite) set can be defined by explicitly specifying all of its elements between the famous curly brackets, known as set braces: $\set {}$.
When a set is defined like this, note that all and only the elements in it are listed.
This is called explicit (set) definition.
It is possible for a set to contain other sets. For example:
- $S = \set {a, \set a}$
Warning
It is important to distinguish between an element, for example $a$, and a singleton containing it, that is, $\set a$.
That is $a$ and $\set a$ are not the same thing.
While it is true that:
- $a \in \set a$
it is not true that:
- $a = \set a$
neither is it true that:
- $a \in a$
Also known as
Some sources refer to this as a roster for the set.
Others call it an enumeration or a listing.
Examples
Example 1
- $A := \set {\dfrac 1 2, 1, \sqrt 2, e, \pi}$
Example 2
- $B := \set {\textrm {Romeo}, \textrm {Juliet} }$
Also see
Sources
- 1963: George F. Simmons: Introduction to Topology and Modern Analysis ... (previous) ... (next): $\S 1$: Sets and Set Inclusion
- 1964: W.E. Deskins: Abstract Algebra ... (previous) ... (next): Chapter $1$: A Common Language: $\S 1.1$ Sets
- 1964: Steven A. Gaal: Point Set Topology ... (previous) ... (next): Introduction to Set Theory: $1$. Elementary Operations on Sets
- 1964: William K. Smith: Limits and Continuity ... (previous) ... (next): $\S 2.1$: Sets
- 1965: Claude Berge and A. Ghouila-Houri: Programming, Games and Transportation Networks ... (previous) ... (next): $1$. Preliminary ideas; sets, vector spaces: $1.1$. Sets
- 1965: J.A. Green: Sets and Groups ... (previous) ... (next): $\S 1.1$. Sets: Example $4$
- 1965: Seth Warner: Modern Algebra ... (previous) ... (next): Chapter $\text I$: Algebraic Structures: $\S 1$: The Language of Set Theory
- 1966: Richard A. Dean: Elements of Abstract Algebra ... (previous) ... (next): $\S 0.2$. Sets
- 1967: George McCarty: Topology: An Introduction with Application to Topological Groups ... (previous) ... (next): Introduction: Set-Theoretic Notation
- 1971: Robert H. Kasriel: Undergraduate Topology ... (previous) ... (next): Chapter $1$: Sets, Functions, and Relations: $\S 1$: Sets and Membership
- 1971: Patrick J. Murphy and Albert F. Kempf: The New Mathematics Made Simple (2nd ed.) ... (previous) ... (next): Chapter $1$: Sets
- 1975: T.S. Blyth: Set Theory and Abstract Algebra ... (previous) ... (next): $\S 1$. Sets; inclusion; intersection; union; complementation; number systems
- 1975: Bert Mendelson: Introduction to Topology (3rd ed.) ... (previous) ... (next): Chapter $1$: Theory of Sets: $\S 2$: Sets and Subsets
- 1977: K.G. Binmore: Mathematical Analysis: A Straightforward Approach ... (previous) ... (next): $\S 1$: Real Numbers: $\S 1.1$: Set Notation
- 1977: Gary Chartrand: Introductory Graph Theory ... (previous) ... (next): Appendix $\text{A}.1$: Sets and Subsets
- 1979: John E. Hopcroft and Jeffrey D. Ullman: Introduction to Automata Theory, Languages, and Computation ... (previous) ... (next): Chapter $1$: Preliminaries: $1.4$ Set Notation
- 1989: George S. Boolos and Richard C. Jeffrey: Computability and Logic (3rd ed.) ... (previous) ... (next): $1$ Enumerability
- 1993: Richard J. Trudeau: Introduction to Graph Theory ... (previous) ... (next): $2$. Graphs: Sets
- 1996: H. Jerome Keisler and Joel Robbin: Mathematical Logic and Computability ... (previous) ... (next): Appendix $\text A$: Sets and Functions: $\text{A}.1$: Sets
- 1999: András Hajnal and Peter Hamburger: Set Theory ... (previous) ... (next): $1$. Notation, Conventions: $5$
- 2000: Kenneth H. Rosen and John G. Michaels: Handbook of Discrete and Combinatorial Mathematics: $\S 1.2.1$
- 2000: James R. Munkres: Topology (2nd ed.) ... (previous) ... (next): $1$: Set Theory and Logic: $\S 1$: Fundamental Concepts
- 2008: David Joyner: Adventures in Group Theory (2nd ed.) ... (previous) ... (next): Chapter $1$: Elementary, my dear Watson: $\S 1.2$: Elements, my dear Watson
- 2012: M. Ben-Ari: Mathematical Logic for Computer Science (3rd ed.) ... (previous) ... (next): Appendix $\text{A}.1$