Definition:Coset
Definition
Let $\struct {S, \circ}$ be an algebraic structure.
Let $\struct {H, \circ}$ be a subgroup of $\struct {S, \circ}$.
Left Coset
The left coset of $x$ modulo $H$, or left coset of $H$ by $x$, is:
- $x \circ H = \set {y \in S: \exists h \in H: y = x \circ h}$
That is, it is the subset product with singleton:
- $x \circ H = \set x \circ H$
Right Coset
The right coset of $y$ modulo $H$, or right coset of $H$ by $y$, is:
- $H \circ y = \set {x \in S: \exists h \in H: x = h \circ y}$
That is, it is the subset product with singleton:
- $H \circ y = H \circ \set y$
Also defined as
It is usual for the algebraic structure $S$ in fact to be a group.
However, this does not prevent the more general definition to be applied when necessary.
Examples
Symmetry Group of Equilateral Triangle: Cosets of Reflection Subgroup
Consider the symmetry group of the equilateral triangle $D_3$.
Let $H \subseteq D_3$ be defined as:
- $H = \set {e, r}$
where:
- $e$ denotes the identity mapping
- $r$ denotes reflection in the line $r$.
The left cosets of $H$ are:
\(\ds H\) | \(=\) | \(\ds \set {e, r}\) | ||||||||||||
\(\ds \) | \(=\) | \(\ds e H\) | ||||||||||||
\(\ds \) | \(=\) | \(\ds r H\) | ||||||||||||
\(\ds s H\) | \(=\) | \(\ds \set {s e, s r}\) | ||||||||||||
\(\ds \) | \(=\) | \(\ds \set {s, q}\) | ||||||||||||
\(\ds \) | \(=\) | \(\ds q H\) | ||||||||||||
\(\ds t H\) | \(=\) | \(\ds \set {t e, t r}\) | ||||||||||||
\(\ds \) | \(=\) | \(\ds \set {t, p}\) | ||||||||||||
\(\ds \) | \(=\) | \(\ds p H\) |
The right cosets of $H$ are:
\(\ds H\) | \(=\) | \(\ds \set {e, r}\) | ||||||||||||
\(\ds \) | \(=\) | \(\ds H e\) | ||||||||||||
\(\ds \) | \(=\) | \(\ds H r\) | ||||||||||||
\(\ds H s\) | \(=\) | \(\ds \set {e s, r s}\) | ||||||||||||
\(\ds \) | \(=\) | \(\ds \set {s, p}\) | ||||||||||||
\(\ds \) | \(=\) | \(\ds H p\) | ||||||||||||
\(\ds H t\) | \(=\) | \(\ds \set {e t, r t}\) | ||||||||||||
\(\ds \) | \(=\) | \(\ds \set {t, q}\) | ||||||||||||
\(\ds \) | \(=\) | \(\ds H q\) |
Symmetric Group on 3 Letters: Cosets of Alternating Subgroup
Consider the symmetric group on 3 Letters.
Let $S_3$ denote the set of permutations on $3$ letters.
The symmetric group on $3$ letters is the algebraic structure:
- $\struct {S_3, \circ}$
where $\circ$ denotes composition of mappings.
Let $H \subseteq S_3$ be defined as:
- $H = \set {e, \tuple {1 2 3}, \tuple {1 3 2} }$
The cosets of $H$ are:
\(\ds e H\) | \(=\) | \(\ds \set {e, \tuple {1 2 3}, \tuple {1 3 2} }\) | ||||||||||||
\(\ds \) | \(=\) | \(\ds \tuple {1 2 3} H\) | ||||||||||||
\(\ds \) | \(=\) | \(\ds \tuple {1 3 2} H\) | ||||||||||||
\(\ds \) | \(=\) | \(\ds H\) |
\(\ds \tuple {1 2} H\) | \(=\) | \(\ds \set {\tuple {1 2}, \tuple {1 2} \tuple {1 2 3}, \tuple {1 2} \tuple {1 3 2} }\) | ||||||||||||
\(\ds \) | \(=\) | \(\ds \set {\tuple {1 2}, \tuple {2 3}, \tuple {1 3} }\) |
Dihedral Group $D_3$: Cosets of $\gen b$
Consider the dihedral group $D_3$.
- $D_3 = \gen {a, b: a^3 = b^2 = e, a b = b a^{-1} }$
Let $H \subseteq D_3$ be defined as:
- $H = \gen b$
where $\gen b$ denotes the subgroup generated by $b$.
As $b$ has order $2$, it follows that:
- $\gen b = \set {e, b}$
Left Cosets
The left cosets of $H$ are:
\(\ds e H\) | \(=\) | \(\ds \set {e, b}\) | ||||||||||||
\(\ds \) | \(=\) | \(\ds b H\) | ||||||||||||
\(\ds \) | \(=\) | \(\ds H\) |
\(\ds a H\) | \(=\) | \(\ds \set {a, a b}\) | ||||||||||||
\(\ds \) | \(=\) | \(\ds a b H\) |
\(\ds a^2 H\) | \(=\) | \(\ds \set {a^2, a^2 b}\) | ||||||||||||
\(\ds \) | \(=\) | \(\ds a^2 b H\) |
Right Cosets
The right cosets of $H$ are:
\(\ds H e\) | \(=\) | \(\ds \set {e, b}\) | ||||||||||||
\(\ds \) | \(=\) | \(\ds H b\) | ||||||||||||
\(\ds \) | \(=\) | \(\ds H\) |
\(\ds H a\) | \(=\) | \(\ds \set {a, a^2 b}\) | ||||||||||||
\(\ds \) | \(=\) | \(\ds H a^2 b\) |
\(\ds H a^2\) | \(=\) | \(\ds \set {a^2, a b}\) | ||||||||||||
\(\ds \) | \(=\) | \(\ds H a b\) |
Subgroup of Infinite Cyclic Group
Let $G = \gen a$ be an infinite cyclic group.
Let $s \in \Z_{>0}$ be a (strictly) positive integer.
Let $H$ be the subgroup of $G$ defined as:
- $H := \gen {a^s}$
Then a complete repetition-free list of the cosets of $H$ in $G$ is:
- $S = \set {H, aH, a^2 H, \ldots, a^{s - 1} H}$
Also see
- Results about cosets can be found here.
Sources
- 1967: George McCarty: Topology: An Introduction with Application to Topological Groups ... (previous) ... (next): Chapter $\text{II}$: Groups: Subgroups
- 1969: C.R.J. Clapham: Introduction to Abstract Algebra ... (previous) ... (next): Chapter $5$: Rings: $\S 20$. Cosets
- 1970: B. Hartley and T.O. Hawkes: Rings, Modules and Linear Algebra ... (previous) ... (next): $\S 2.2$: Homomorphisms
- 1978: Thomas A. Whitelaw: An Introduction to Abstract Algebra ... (previous) ... (next): $\S 41$. Multiplication of subsets of a group
- 1989: Ephraim J. Borowski and Jonathan M. Borwein: Dictionary of Mathematics ... (previous) ... (next): coset